Drug Discov Ther. 2019;13(5):248-255. (DOI: 10.5582/ddt.2019.01068)

1,2,3-Triazolyl ester of ketorolac (15K), a potent PAK1 blocker, inhibits both growth and metastasis of orthotopic human pancreatic cancer xenografts in mice.

Hennig R, Albawardi A, Almarzooqi S, Shoja MH, Samuel E, Zaaba NEB, Nemmar A, Subramanya S, Maruta H, Adrian TE


More than 90% of human pancreatic cancers carry the oncogenic mutant of Ki-RAS and their growth depends on its downstream kinase PAK1, mainly because PAK1 blocks the apoptosis of cancer cells selectively. We developed a highly cell-permeable PAK1-blocker called 15K from an old pain-killer (ketorolac), that is shown here to inhibit the growth of three pancreatic cancer cell lines with IC50 values ranging 41-88 nM in vitro. The anti-cancer effect of 15K was further investigated in an orthotopic xenograft model with gemcitabine (GEM)-resistant human pancreatic cancer cell lines (AsPC-1 and BxPC-3) expressing luciferase in athymic mice. During 4 weeks, 15K blocks total burden (growth) of both AsPC-1 and BxPC-3 tumors (measured as radians/sec) with the IC50 below daily dose of 0.1 mg/kg, i.p. In a similar manner 15K reduced both their invasion and metastases as well, while it had no effect on either body weight or hematological parameters even at 5 mg/kg/day. To the best of our knowledge, 15K is so far the most potent among synthetic PAK1-blockers in vivo, and could be potentially useful for therapy of GEM-resistant cancers.

KEYWORDS: 1,2,3-Triazolyl ester of ketorolac (15K), PAK1, pancreatic cancer, gemcitabine resistance, xenografts

Full Text: