

Figure S1. Chromatogram and spectrogram of active compounds analyzed in Ultra-Fast Liquid Chromatography (UFLC). (A) Brefeldin A (1 μ g), (B) beauveriolide I (1 μ g), (C) beauveriolide III (1 μ g), (D) beauverolide A (1 μ g), (E) beauverolide B (1 μ g), (F) beauverolide K (1 μ g), (G) oxohygrolidin (1 μ g), (H) hygrolidin (1 μ g), (I) dinapinone A1 (0.2 μ g) and (J) dinapinone A2 (0.2 μ g) were diluted in methanol and analyzed in UFLC system under the following condition (column, Shimpak XR-ODS (i.d. 2.0 × 75 mm); eluent, 6 minutes linear gradient from 5-95% CH₃CN-0.1% H₃PO₄ then 1 minute isocratic 95% CH₃CN-0.1% H₃PO₄; flow, 0.55 mL/min; detection, UV at 190-370 nm).

Figure S2. ¹H-NMR spectrum of oxohygrolidin (7) (400 MHz, in CDCl₃).

Figure S3. ¹H-NMR spectrum of hygrolidin (8) (600 MHz, in DMSO-*d*₆).

Supplementary materials and methods

1.1. Chemical data of active compounds

Beauverolide A (4) (1, 2): HR-ESIMS: m/z found 552.3399, calcd 552.3413 for C₃₀H₄₇N₃O₅Na [M + Na]+.

Beauverolide B (**5**) (*2*, *3*): HR-ESIMS: m/z found 544.3737, calcd 544.3750 for C₃₁H₅₀N₃O₅ [M + H]+.

Beauverolide K (6) (2, 3): HR-ESIMS: m/z found 613.3820, calcd 613.3859 for C₃₇H₅₁N₄O₅ [M + H]+.

Oxohygrolidin (7) (4): HR-ESIMS: m/z found 575,3943, calcd 575.3934 for C₃₄H₅₅O₇ [M + H]+; 1H-NMR (400 MHz, CDCl3) δ 0.93 (CH3, d), 0.95 (CH3, s), 0.95 (CH3, s), 1.07 (CH3, d), 1.09 (CH3, d), 1.20 (CH3, d), 1.38~1.54 (CH2, m), 1.91 (CH3, s), 1.93~1.98 (CH, m), 1.96 (CH3, d), 1.95~1.98 (CH2-a, m), 1.96~2.10 (CH, m), 2.05 (CH3, s), 2.11~2.15 (CH2-b, m), 2.42 (CH, m), 2.54 (CH, m), 2.96 (CH, m), 3.21 (CH3, s), 3.29 (CH, d), 3.48 (CH, q), 3.73 (CH, q), 3.80 (CH, t), 5.01 (CH, dd), 5.18 (CH, q), 5.80 (CH, br. d), 6.26 (CH, dd), 6.46 (CH, q), 6.82 (CH, q), 7.20 (CH, s).

Hygrolidin (8) (5): HR-ESIMS: m/z found 713.3877, calcd 713.3882 for C₃₈H₅₈O₁₁Na [M + Na]+; 1H-NMR (600 MHz, DMSO-d6) δ 0.71 (3H, d), 0.74 (CH3, d), 0.81 (CH3, t), 0.85 (CH3, d), 0.86 (CH3, d), 0.94 (CH3, d), 1.28~1.39 (CH2, m), 1.50 (CH2-a, t), 1.66 (CH, m), 1.71 (CH, m), 1.76 (CH3, s), 1.83 (CH2-b, m), 1.83 (CH, m), 1.87~2.00 (CH2, m), 1.89 (CH3, s), 1.94 (CH, m), 1.95 (CH3, s), 2.43 (CH, t), 3.13 (CH3, s), 3.14 (CH, t), 3.81 (CH, q), 3.86 (CH, m), 3.97 (CH, t), 4.61 (OH, q), 4.60 (OH, d), 5.04 (CH, dd), 5.11 (CH, dd), 5.22 (CH, m), 5.59 (OH, s), 5.69 (CH, d), 5.91 (CH, d), 6.50 (CH, q), 6.57 (CH, d), 6.68 (CH, d), 7.12 (CH, s).

1.2. Assay of neutral lipid synthesis in CHO-K1 cells

Assays for triacylglycerol (TG) and cholesteryl ester (CE) synthesis using CHO-K1 cells were conducted according to established methods with some modifications (*6*). CHO-K1 cells (1.25×10^5 cells) were seeded in a 48-well plastic microplate in 250 µL of maintained medium and allowed to recover overnight in 37°C and 5.0% CO₂. Following the recovery, 2.5 µL of a sample/control (in methanol) and 5 µL of [¹⁴C]oleic acid (1 nmol, 1.85 KBq in 10% ethanol/PBS solution) were then added to each well and incubated for 6 hours in 37°C and 5.0% CO₂. After incubation, cells were washed twice with 250 µL of PBS. The cells were then lysed using 250 µL of 10 mM Tris-HCl (pH 7.5) containing 0.1% (w/v) SDS, and neutral lipid were extracted following the method of Bligh and Dye (7). [¹⁴C]TG and [¹⁴C]CE were separated on a TLC plate (silica gel F254, 0.5-mm thick) and then analyzed with a bioimaging analyzer (FLA7000). Neutral lipid inhibitory activity (%) was defined as ([¹⁴C]TG or [¹⁴C]CE of sample/[¹⁴C]TG or [¹⁴C]CE of control) × 100. The IC₅₀ value was defined as the sample concentration causing 50% inhibition of neutral lipid synthesis.

1.3. Sterol *O*-acyltransferase (SOAT) enzyme assay using microsomes prepared from CHO-K1 cells

SOAT assay using microsomes prepared from CHO-K1 cells was conducted using our established method (8). Briefly, CHO-K1 cells (80%-90% confluences cultured in 10 mL culture discs) were homogenized in 8 mL cold buffered sucrose solution (pH 7.2, 100 mM sucrose, 50 mM KCl, 40 mM KH₂PO₄, and 30 mM EDTA; hereafter referred to as buffer A) in a Potter-type homogenizer. The microsomal fraction was pelleted by centrifugation at 100,000× g at 4°C for 1 h (TLA110, Beckman Coulter), resuspended in buffer A, and stored at -80° C until used. An assay cocktail for SOAT activity contained 500 µg BSA (fatty acid free), [1-¹⁴C] oleoyl-CoA (20 mM, 3.7 kBq), a test sample (2.0 µL in methanol solution), and microsomes of CHO-K1 cells in a total volume of 200 µL buffer A. [1-¹⁴C]oleoyl-CoA was added last in the assay cocktail to start the SOAT reaction. After a 5-min reaction at 37°C, the reaction was stopped by adding chloroform:methanol (2:1, 1.2)

mL). The product [¹⁴C]CE was extracted using the method of Bligh and Dyer (7). Neutral lipids were separated on a TLC plate (silica gel F254, 0.5-mm thick) and then analyzed with a bioimaging analyzer (FLA7000). SOAT activity (%) was defined as ([¹⁴C]CE of sample/[¹⁴C]CE of control)×100. The IC₅₀ value was defined as the sample concentration causing 50% inhibition of SOAT.

References

- Elsworth JF, Grove JF. Cyclodepsipeptides from Beauveria bassiana. Part 2. Beauverolides
 A to F and their relationship to isarolide. J Chem Soc, Perkin Trans 1. 1980; 1795-1799.
- Kuzma M, Jegorov A, Kačer P, Havlíček V. Sequencing of new beauverolides by highperformance liquid chromatography and mass spectrometry. J Mass Spectrom. 2001; 36:1108-1115.
- 3. Grove JF. Cyclodepsipeptides from *Beauveria bassiana*. Part 3. The isolation of beauverolides Ba, Ca, Ja, and Ka. J Chem Soc, Perkin Trans 1. 1980;2878-2880.
- Kretschmer A, Dorgerloh M, Deeg M, Hagenmaier H. The structures of novel insecticidal macrolides: bafilomycins D and E, and oxohygrolidin. Agric Biol Chem. 1985; 49:2509-2511.
- Seto H, Akao H, Furihata K, Ōtake N. The structure of a new antibiotic, hygrolidin. Tetrahedron Lett. 1982; 23:2667-2670.
- Kobayashi K, Ohte S, Ohshiro T, Ugaki N, Tomoda H. A mixture of atropisomers enhances neutral lipid degradation in mammalian cells with autophagy induction. Sci Rep. 2018; 8:1-11.
- Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959; 37:911-917.
- Ohshiro T, Rudel LL, Ōmura S, Tomoda H. Selectivity of microbial acyl-CoA : cholesterol acyltransferase Inhibitors toward Isozymes. J Antibiot. 2007; 60:43-51.