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1. Introduction

Pathogenic fungi cause serious infectious diseases, 
such as pneumonia, in humans. Older persons, HIV-
infected patients, and patients undergoing treatment 
with immunosuppressive therapies are particularly 
susceptible to fungal infections. Pathogenic fungi 
have various virulence factors that are required for 
their survival in host environments. The expression 
of virulence factors in fungi seems to be regulated in 
response to the host environments. Understanding the 
molecular mechanisms of pathogenicity by fungi will 
help to establish effective therapeutic strategies for 
fungal infection. 
 In general, animal models mimicking human 
infectious diseases are used to identify virulence factors 
in pathogens. Mice are widely used as a model animal 
for fungal infections (1). The use of large numbers of 
mammalian animals, however, is costly and associated 
with ethical issues regarding animal welfare. To address 
these problems, we propose the use of silkworms as 
an animal model to study human pathogens (2-4). The 
cost to purchase and rear silkworms is much lower 
than that of mice, and the use of silkworms avoids the 
ethical problems of killing mammals. We previously 
reported silkworm-infection model of Staphylococcus 

aureus, which causes opportunistic diseases in humans 
(5-9). We recently demonstrated that the silkworm S. 
aureus infection model was useful for discovering novel 
antibiotics effective in a mouse model (5,6). Moreover, 
disruption mutants of S. aureus with attenuated killing 
abilities in silkworms exhibited less pathogenicity than 
wild-type strains in mice (7-9). Silkworms are killed 
by injection of Candida albicans (10,11), Candida 
tropicalis (10), Candida grabrata (12), or Cryptococcus 
neoformans (13). Therefore, the silkworm seems 
to be a suitable animal model for identifying genes 
of bacteria and fungi responsible for the expression 
of pathogenicity. In this mini review, we describe 
recent findings in silkworm infection models of each 
pathogenic fungus.

2. Silkworm-fungal infection models

2.1. Candida albicans

C. albicans is frequently isolated from patients with 
fungal infection. We previously reported that injection 
of C. albicans kills silkworms and that administration 
of anti-fungal drugs has therapeutic effects (10). The 
regulatory mechanisms of the pathogenesis of C. 
albicans mediated by protein kinases in C. albicans 
have been reported (14,15). Important roles for type 2B 
serine/threonine protein kinases, called the calcineurin 
complex CMP1 (also known as CNA1), in the 
pathogenicity of C. albicans have been demonstrated 
(15). Protein kinase SIT4 and YVH1 are also involved 
in the pathogenicity (16,17). Hanaoka et al. screened 
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virulence factors among protein kinases in C. albicans 
using the silkworm infection model (11). They injected 
21 gene-disrupted mutants of genes encoding protein 
kinases into the hemolymph of silkworms, and found 
four gene mutants (cmp1, sit4, yvh1, and ptc1) with 
attenuated killing ability in silkworms (11). Among 
these genes, the pathogenicity of the ptc1 gene had 
not been previously reported. Thus, this gene was first 
identified as a virulence gene of fungi in a study using 
silkworms. The ptc1 gene-disrupted mutant exhibited 
low hyphae formation activity and low protease 
activity. Moreover, the mutant also exhibited attenuated 
pathogenicity in mice (11). The other three genes were 
previously shown to be associated with pathogenicity 
by altered expression of virulence genes in a mouse 
infection model (16-18). These findings suggest that 
the silkworm-C. albicans infection model is useful for 
identifying the virulence factors of C. albicans.

2.2. Candida tropicalis

C. tropicalis is a pathogenic fungus that is frequently 
isolated from human patients. We demonstrated that 
antifungal reagents have therapeutic effects in a silkworm 
infection model with C. tropicalis (10). C. tropicalis 
is a fungus closely related to C. albicans. Thus, future 
experiments with C. tropicalis gene-disrupted mutants 
using the silkworm fungal infection model may allow us 
to identify the virulence genes of the fungus.

2.3. Candida grabrata

C. grabrata resides in the human intestinal tract. This 
fungus causes opportunistic infections in patients with 
the metabolic diseases, such as diabetes (19). Ueno et 
al. screened C. grabrata mutants with low pathogenicity 
in hyperglycemic silkworms, created by feeding a high 
glucose diet (20). They demonstrated that the cyb2 
gene of C. grabrata is required for the pathogenicity 

of C. grabrata against hyperglycemic silkworms (12). 
In addition, a hap2 gene mutant and hap5 gene mutant 
in which the RNA level of the cyb2 gene is decreased, 
exhibit less virulence in the hyperglycemic silkworm. 
The cyb2 gene encodes a protein with 65% homology 
to lactate dehydrogenase in Saccharomyces cerevisiae 
(12). A C. grabrata cyb2 deficiency mutant exhibits 
decreased colonization ability in the gastrointestinal tract 
based on a mouse model of diabetes (12). These findings 
indicate the usefulness of the silkworm infection model 
with C. grabrata for searching for virulence factors of C. 
grabrata.

2.4. Cryptococcus neoformans

C. neoformans is a causal microbial of severe fungal 
infections, such as pneumonia and encephalitis. 
Antifungal agents have therapeutic effects in silkworms 
infected with C. neoformans (13). C. neoformans has 
a characteristic capsular structure on the cell surface.  
The capsular structure is suggested to be required for 
the pathogenicity of C. neoformans. C. neoformans 
has at least two serotypes, serotype A and serotype 
D. Serotype A of the fungus has higher capsule-
forming ability and higher pathogenicity in mammals 
than the serotype D (21). As in mammalian infection 
experiments, the C. neoformans serotype A exhibits 
higher pathogenicity in the silkworm infection model 
than C. neoformans serotype D (13). Furthermore, 
mutants of the can, gpa1, and pka1 genes, which are 
required for C. neoformans pathogenicity in mammals, 
also exhibit lower virulence in silkworms. The protein 
encoded the cna gene is suggested to contribute to the 
pathogenicity via calcineurin signaling (22). 
 The gpa1 gene encodes a G-protein α-subunit that 
contributes to the capsular formation (23). Protein 
kinase A acts downstream of Gpa1 and contributes to 
capsule formation (24). We also demonstrated that the 
pathogenicity of C. neoformans is significantly altered 
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Figure 1. Effect of temperature on the capsular formation of C. neoformans in the hemolymph of live silkworms. Cells of C. 
neoformans were injected into the silkworm hemolymph. Twenty-four hours after injection, C. neoformans cells were harvested 
from the silkworm hemolymph, stained with Indian ink, and observed under a microscope. (A) Cells of C. neoformans in the 
hemolymph of silkworms reared at 27°C. (B) Cells of C. neoformans in the hemolymph of silkworms reared at 37°C. (C) Mean 
diameters of C. neoformans cells at 27°C and 37°C. Figures were taken from Matsumoto et al. (13).
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by temperature; the pathogenicity of the fungi against 
silkworms is much stronger at 37°C than at 27°C. The 
capsule size and cell size of C. neoformans at 37°C 
in the silkworm hemolymph is significantly greater 
than that at 27°C condition (Figure 1). This finding 
suggests that capsule formation is required for the 
pathogenicity of C. neoformans in both silkworms and 
mammals. Taken together, these findings suggest that 
the silkworm is a suitable animal model for evaluation 
of the pathogenicity of C. neoformans.

3. Conclusions

The silkworm fungal infection model was used to 
evaluate the pathogenicities of four different species 
of fungi, C. albicans, C. tropicalis, C. grabrata, and 
C. neoformans. Among these pathogenic fungi, gene-
disrupted mutants of pathogenic genes in C. albicans, C. 
grabrata, and C. neoformans exhibited less pathogenicity 
in silkworms (Table 1). In particular, strains deficient 
in genes encoding the intracellular signaling proteins 
such as protein kinases and G proteins had decreased 
killing ability in silkworms. In C. albicans and C. 
grabrata, pathogenic genes identified by screening in 
silkworm infection models are required for pathogenicity 
in mammals. Therefore, we suggest that the silkworm 
fungal infection model is useful for identifying the genes 
necessary for fungal pathogenicity in mammals. 
 Fungal infections, which cause opportunistic 
diseases, are anticipated to become a serious problem 
in future along with advances in medical care and 
increasing number of aged people in our society. 
Identification of virulence factors in fungi using 
silkworm infection models will help to elucidate the 
molecular mechanisms of fungal pathogenesis and 
facilitate the development of strategies for preventing 
and treating fungal infections.
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