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1. Introduction

Sugars occur in a variety of forms and locations 
in nature. Besides their roles in metabolism and as 
structural building blocks, sugars are fundamental 
constituents of every cell surface, which play critical 
roles in many cellular functions and disease. Sugar-
based drugs are a relatively untapped source of new 
drugs and therefore offer an exciting new generation 
of drug therapies (1,2). Depending on their degree of 
polymerization (DP), simple sugars are often referred to 
as monosaccharides such as glucose and disaccharides 
(DP 1-2). Oligosaccharide typically refers to a bit 
longer chains (DP 3-9), whereas much larger molecules 
are defined as polysaccharides (DP > 9). Those attached 

with proteins or lipids are known as glycoconjugates 
or, more specifically, glycoproteins and glycolipids 
(3,4). Although studies of those activities lag behind 
research into genes and proteins, several carbohydrate-
based molecules are known for their wide range of 
pharmacological activities and have been clinically 
used to treat different ailments (5,6).
 Naturally occurring sugars are abundant, and 
can be derived from plants, fungi, bacteria, algae 
and animals (1,7). Low-molecular-weight heparin, 
derived from animal tissue, is the prominent example 
that successfully developed as clinical medicine for 
anticoagulants (8). Carbohydrates have also established 
themselves as the most clinically relevant antigens of 
those tested and subsequently developed for vaccines 
against infectious diseases, which initially isolated 
from bacteria (9). So far carbohydrate vaccines are 
widely derived from bacteria, protozoa, helminths, 
viruses, fungi and especially from cancer cells for 
immunotherapy on cancer (10). Lentinan, isolated 
from the fruit body of Lentinula edodes, is one of the 
host-mediated anti-cancer drugs and has been shown 
to affect host defense immune systems (11). Structure-
activity relationship studies showed that (1→3)-β-D-
glucan with (1→6)-glucosyl side groups and triple-
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helical types play the decisive roles in its anti-cancer 
activity (12).
 The structure of naturally occurring carbohydrates 
is often complex. The biological activities of them 
are closely correlated to their physico-chemical 
properties, such as molecular size, types and ratios 
of constituent monosaccharides, and features of 
glycosidic linkages (e.g., configuration and position of 
glycosidic linkages, and sequence of monosaccharides) 
(13). Characterization of carbohydrates is therefore 
necessary to ensure their efficacy and safety (14). Gas 
chromatography – mass spectrometry (GC-MS) is an 
excellent technique for analysis of carbohydrates for its 
high resolution and high sensitivity. It is irreplaceable for 
both qualitative and quantitative analysis of structurally 
similar monosaccharides (14). However, the preparation 
of volatile derivatives is required for different functional 
groups in carbohydrates. This review aims to collect 
the most important methodologies currently used for 
the carbohydrates analysis of sweet medicines based 
on GC-MS. The aspects include the derivatization for 

monosaccharide analysis, hydrolysis methods during 
polysaccharide analysis, glycosidic linkages analysis 
based on methylation, and pyrolysis gas chromatography 
in carbohydrate analysis. Finally a strategy for quality 
control (QC) of sweet medicines based on quantification 
analysis is proposed.

2. Qualitative analysis of monosaccharides

Monosaccharides are the simplest carbohydrates, 
which are the basic unit to compose disaccharides, 
oligosaccharides and polysaccharides. Monosaccharides 
can be found naturally as free carbohydrates or are 
produced by the hydrolysis of polymeric carbohydrates 
including oligosaccharides, polysaccharides and 
glycoconjugates (15). Generally analysis of polymeric 
carbohydrates in sweet medicines based on GC-MS 
would convert to monosaccharides analysis after various 
derivatization and hydrolysis (Figure 1). The strategy 
for carbohydrates analysis of sweet medicines based 
on GC-MS is shown in Figure 1. The targets include 

95

Figure 1. Quality control of sweet medicines based on GC-MS. P-N: polysaccharides composed of neutral monosaccharides, 
P-A: polysaccharides contained sugar acids, P-B: polysaccharides contained amino sugars or iminosugars, M-N: neutral 
monosaccharides, M-AL: alditols, M-A: sugar acids, M-B: amino sugars or iminosugars.
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sweet medicines. One-step reaction, including acetylation 
and silylation, focuses on the increase of volatility 
by substituting the polar groups in carbohydrates. It 
is preferred because of its simple and time-saving 
derivatization procedure.
 Acetates are prepared directly by reaction of the sugar 
with acetic anhydride or together with a basic solvent 
such as pyridine. It is rapid and applicable for aldoses, 
ketoses and alditols (14,16). Especially when catalyst 
such as 1-methylimidazole is used, the reaction will be 
sped up (17,18). Multiple peaks formed corresponding 
to one sugar limit the application of this method. 
Researchers focused on this problem recently developed 
a methyl sulfoxide (Me2SO)/1-methylimidazole system 
to esterification reactions, and 23 free saccharides (80% 
MeOH extracts) including aldoses, ketoses, alditols, 
amino sugars as well as trehalose and sucrose were 
acetylated. Only one peak was formed of each analyte for 
quantification analysis Figure 2a (17). Besides microscale 
sampling and derivatization is environmentally friendly 
and speed up the total sample preparation procedure 
for GC-MS analysis, therefore promising for the future 
carbohydrates analysis in sweet medicines (18).
 TMS ethers have better volatility and stability than 
acetates and are more popularly applied for GC analysis 
of carbohydrates in sweet medicines Table 1. TMS 
ethers also prepared directly with derivatization regents 
or together with aprotic solvents. Generally, pyridine 
is the most commonly used solvent among several 
aprotic solvents for good solubility of the carbohydrates. 
Pyridine and silylation reagents are volatile and can 
be easily evaporated before the sample is analyzed. 
Sometimes complete reaction mixture can be injected 
directly into the gas chromatograph, thus avoiding any 
cleanup stages. There are many silylation reagents that 
have been applied for the analysis of carbohydrates in 
sweet medicines at different temperatures for different 
reaction times (19-22). Hexamethyldisilazane (HMDS), 
N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA), 
trimethylchlorosilane (TMCS) and N-methyl-N-
trimethylsilyltrifluoroacetamide (MSTFA) are the most 
commonly used reagents. Alkylsilyl derivatives for gas 
chromatography are summarized in a previous review 
(23). Sometimes, a mixture of different silylation regents 
is also used. HMDS and chlorotrimethylsilane (TMSCI) 

neutral carbohydrates (aldoses and ketoses), alditols, 
sugar acids, amino sugars and iminosugars in both of 
free and polymeric carbohydrates in sweet medicines. 
Derivatization of carbohydrates for gas chromatography 
(GC) and GC-MS analyses was reviewed recently (14). 
Herein we discuss the aspects related to QC of sweet 
medicines and updated applications based on GC-MS.

2.1. Derivatization

The common sugars existed in nature in free and 
polymeric forms mainly include neutral carbohydrates 
(aldoses and ketoses), alditols, acid sugars, amino 
and iminosugars. Derivatization is crucial for non-
volatile carbohydrates converted to volatile derivatives 
amenable to GC analysis. Due to the relatively low 
volatility of carbohydrates, GC analysis is limited to 
derivatized sugars of low molecular weight, mainly 
mono-, di- and trisaccharides (14). Generally, the 
diversity of naturally occuring carbohydrates makes 
the derivatization difficult to cover all kinds of 
sugars. Therefore adopting a suitable choice based on 
the individual samples is very important. The most 
used derivatization method available for different 
kind of sugars in sweet medicines especially the 
chromatographic behaviors and thier applications were 
summarized in Table 1 and disscussed as follows.

2.1.1. Neutral carbohydrates (aldoses, ketoses) and 
alditols

Neutral carbohydrates are the most common sugars 
existed in sweet medicines, such as aldoses including 
arabinose, xylose, ribose, fucose, rhamnose, mannose, 
glucose, galactose and ketoses such as fructose. Alditols 
such as erythritol, rhamnitol, mannitol, sorbitol, xylitol, 
etc. However the different chemical properties of 
aldoses, ketoses and alditols, which are induced by 
a high number of functional groups in the molecule 
and tautomeric forms in solution, lead to different 
derivatives and chromatographic behavior.
 A variety of derivatives, including acetates, 
trimethylsilyl (TMS) derivatives, alditol acetates, 
aldononitrile acetates and oxime derived compounds, 
have been widely used for the analysis of carbohydrates in 

Table 1. Derivatization methods available for neutral carbohydrates and alditols in sweet medicines (data from 243 journal 
articles collected in Web of Science mainly dated 2010-2014)

Derivatiztion Methods

Acetates
TMS derivatives
Alditol acetates
Oximes and derived compounds
Aldononitrile acetates
Others

Reaction steps

One
One
Two
Two
Two

Aldose

Ma/Sb

M
S
D
S

aM: multiple peaks; bS: single peak; cD: double peaks; d-: not applicable.

Ketose

M/S
M
Dc

D
-d

Alditols

S
S
S
S
S

Applications

 
    9
  58
120
    8
  42
    6

Neutral carbohydrates
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were together used for the derivatization of aldoses, 
ketoses, and uronic acid simultaneously to characterize 
the polysaccharides from Kadsura marmorata fruits, 
which is a commonly used traditional Chinese medicines 
(TCMs) Figure 2b (22). Different silylation regents 
including HMDS, MSTFA and BSTFA were compared 
for determination of carbohydrates in medicinal plants. 
Mono-, di- and tri-saccharides (glucose, sucrose, and 
raffinose) were all taken into the consideration. The 
results showed that BSTFA delivered both satisfactory 
chromatographic behavior (two signals of glucose 
and one signal for sucrose and raffinose) and signal 
intensity. MSTFA delivered comparable results with 
BSTFA, however with lower signal intensity. HMDS 
has drawn negative attention because of multiple peaks 
gained and very low signal intensity (24). Furthermore, 
trimethylsilyl cyanide (TMSCN) was developed for 
evaluating the carbohydrates simultaneously with amino 

acids, small organic acids, phenolic acids, flavonoids 
and triterpenoids in plant extracts. The results indicated 
that TMSCN achieved 8.8 times higher intensities than 
MSTFA (25). However, TMSCN should be employed 
with special care since it hydrolyzes to give hypertoxic 
hydrogen cyanide, which limits its applications. For 
TMS derivatizations, it should be noted that the silylation 
reagents are moisture sensitive, the entire derivatization 
process needs to avoid the introduction of water.
 Both acetates and TMS ethers are achieved by one-
step derivatization and could be applied for the analysis 
of aldoses, ketoses and alditols. However, the anomeric 
centre leads to isomers peaks make the chromatography 
complicated and embarrass the accurate identification. For 
more authentic identification and accurate quantification, 
two-step derivatization is appreciated: one step to modify 
the anomeric centre, another to improve the volatility. The 
commonly used modification methods about the anomeric 
centre of carbohydrates are 1) reduction or 2) oximation. 
 Reduction of the carbonyl group in aldoses and 
subsequent acetylation to form alditol acetates could 
simplify chromatograms by producing a single peak 
for each aldose. The reduction commonly achieved by 
NaBH4/NaBD4 or NaBH4/NaBD4 in NH4OH (usually 
cost several hours) and acetylation with pyridine-acetic 
anhydride or 1-methylimidazole-acetic anhydride. The 
aldoses, sugar acids and amino sugars were successfully 
derivatized as single peaks corresponding to every 
sugar by this method (except N-acetyl-neuraminic 
acid (NAcNeu)) (Figure 2c) (26). One of the main 
drawbacks of these derivatives, which make it lose the 
original information of complex samples, is that ketoses 
produce two alditol acetates. What's more, aldoses 
and ketoses could yield the same alditol acetates. 
Take fructose as an example, it produces mannitol and 
glucitol after reduction, while glucose also produces 
glucitol after the reduction. In fact, fructose could 
be reduced into glucitol and mannitol in a fixed 
proportion and samples containing glucose and fructose 
simultaneously could be quantified with acceptable 
reproducibility (27). Another difficulty in preparation 
of alditol acetates is that the step of reduction is time-
consuming; furthermore, removing the excess NaBH4 
makes the procedure tedious to perform. Nevertheless, 
alditol acetate is still the most commonly used approach 
for carbohydrate analysis in sweet medicines (Table 
1), because of good chromatographic behavior for 
identification and quantification. Additionally, the 
achieved derivatives are stable. 
 Oxime derivatives are obtained by oximation, 
which commonly uses hydroxylamine hydrochloride 
in pyridine (other regents including methoxiamine 
hydrochloride, O-ethylhydroxylamine hydrochloride 
and O-benzylhydroxylamine hydrochloride also 
could be used (28)) and subsequent silylation to 
form trimethylsilyl oximes (TMSO). In some cases, 
trifluoroacetylation (28) and acetylation (29) also used for 

Figure 2. Typical GC chromatograms of acetates of aldoses, 
ketoses, alditols, amino sugars and disaccharides (a), TMS 
derivatives of aldoses, ketoses and sugar acids (b), alditol 
acetates of aldoses, amino sugars and sugar acids (c). (a) (17), 
(b) (22), (c) (26), respectively, with permission. 1. erythritol, 
2. 2-deoxy-β-D-ribose, 3. 2-Deoxy-D-ribitol, 4. xylose, 5. 
rhamnose, 6. fucose, 7. arabinose, 8. rhamnitol, 9. ribitol, 10. 
fucitol, 11. arabinitol, 12. xylitol, 13. galactose, 14. glucose, 15. 
fructose, 16. mannose, 17. inositol, 18. mannitol, 19. sorbitol, 
20. galactitol 21. N-acetyl-D-glucosamine, 22. trehalose, 23. 
sucrose, 24. ribose, 25. galacturonic acid, 26. mannuronic 
acid, 27. glucuronic acid, 28. N-acetyl-D-galactosamine, 29. 
N-acetyl-D-mannosamine, 30. N-acetyl-neuraminic acid.
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subsequent derivatization. All of these oximes derivatives 
produce two peaks corresponding to the syn (E) and anti 
(Z) forms per reducing sugar and applicable to aldoses, 
ketoses and alditols (except aldononitrile acetates). 
As relative simple chromatograms are achieved, these 
derivatives have also been adopted for carbohydrate 
analysis in complex mixtures (30-33). The comparison of 
single-step derivatization trimethylsilylation and two-step 
approaches including ethoximation-trimethylsilylation 
(EO-TMS), ethoximation-trifluoroacetylation (EO-
TFA), benzoximation-trimethylsilylation (BO-TMS) 
and benzoximation-trifluoroacetylation (BO-TFA) 
have been comprehensively studied for derivatization 
of aldoses and ketoses with regard to chromatographic 
characteristics. Results showed that two-step EO-TMS 
was superior to other approaches due to the low number 
of peaks obtained per carbohydrate, abundant structural 
information of mass spectra, low limits of detection and 
quantitation (28). Derivatization of aldose and ketose 
to their respective O-methyloxime acetates (oximation 
by methoxiamine hydrochloride and acetylation by 
acetic anhydride) for GC-MS analysis is also a facile 
method for the determination when aldoses and ketoses 
simultaneously existed, and more stable and sensitive 
than TMSO. Moreover, O-methyloxime acetates 
derivatives of glucose and fructose showed characteristic 
fragments both in chemical ionization (CI) and electronic 
ionizaton (EI) mode of mass spectrometry (31). 
 Especially, when aldose oximes are subsequently 
acetylated with acetic anhydride and dehydrated to 
aldononitrile acetates, a unique peak is achieved for 
every aldose. The derivatization procedure is relatively 
rapid (oximation with hydroxylamine hydrochloride-
pyridine at 90°C for 30 min and acetylation by 
acetic anhydride at 90°C for 30 min). The produced 
aldononitrile acetates are more stable than TMS 
derivatives and have better sensitivity, accuracy and 
reproducibility in the qualitative and quantitative 
analysis of carbohydrates in complex matrix (34-37). 
The derivatization of aldose and alditols to aldononitrile 
acetates was successfully archived single peaks and 
quantification analysis of carbohydrates in Ganoderma 
(38). However, the validity of quantitative analysis using 
these derivatives also has the drawback that they cannot 
be applied for analysis of ketoses (14,31). Actually, 
when aldoses and ketoses exist simultaneously in the 
matrix, samples can go through oximation first and 
subsequent derivatization by acetylation and silylation, 
respectively, and finally converted to aldononitrile 
acetates and TMSO respectively. The developed 
method showed good chromatographic behavior and 
quantitative results (39).

2.1.2. Sugar acids

Sugar acids are monosaccharides with one or more 
carboxyl group and also known as polyhydroxy 

carboxylic acids. Generally, sugar acids include following 
classes: i) aldonic acids, in which the aldehyde functional 
group of an aldose is oxidized; ii) uronic acids, in which 
the terminal hydroxyl group of an aldose or ketose is 
oxidized; iii) aldaric acids, in which both ends of an 
aldose are oxidized (40). Among them uronic acids such 
as glucuronic acid (GlcA) and galacturonic acid (GalA) 
are most commonly found in nature and present as parts 
of structural and/or extracellular polysaccharides or 
glycoconjugates. Analysis of these compounds requires 
hydrolysis or methanolysis before derivatization, which 
will discuss in section 2.2. Conventionally, colorimetric 
methods using different chromogens including carbazole, 
3-phenylphenol and 3,5-dimethylphenol (DMP) are 
most commonly used methods explored for uronic 
acid estimation in polysaccharides but these methods 
counter numerous difficulties when neutral sugars are 
present in substantial amount (41). GC analysis despite 
time consuming for derivatization procedure remains 
the finest method for precise estimation of uronic acids 
(41,42). The derivatives including acetates (43), TMS 
derivatives (22,44), oximes derivatives (45), and alditol 
acetates (26) have been used for the analysis of sugar 
acids. However, because hydroxyl and carboxyl groups 
simultaneously exist in one molecule, different lactones 
will be formed, and furthermore, coupled with anomeric 
centre, complex chromatograms will be generated when 
uronic acids presented in the samples. The methyl ester 
alditol acetate is the alternative solutions for decreasing 
the multiple peaks. Guilherme L. Sassaki proposed 
methyl ester alditol acetate for simultaneously determined 
neutral, uronic acids and amino sugars. The mixture was 
firstly de-lactonizated with NH4OH at room temperature, 
subsequently reduced by NaBH4 to form alditols, and then 
methyl esters were formed by 0.5 M HCl in MeOH. Finally 
acetylation of the Me-alditols was performed in pyridine-
acetic anhydride (Ac2O) (1:1, v/v) and uronic acids gave 
characteristic ions at m/z 143, 156 and 173 (26).

2.1.3. Amino sugars and iminosugars

A m i n o  s u g a r s  a r e  t h e  h y d r o x y l  g r o u p  o f 
monosaccharides replaced by the amino group, and 
sometimes by the N-acetyl-amino group. As with the 
deoxy sugars, theoretically any hydroxyl group can 
be replaced. The most commonly occurring amino 
sugars are D-glucosamine (2-amino-2-deoxy-D-glucose, 
GlcN), D-galactosamine (2-amino-2-deoxy-D-galactose, 
GalN), N-acetylglucosamine (N-acetyl-D-glucosamine, 
GlcNAc) and N-acetylgalactosamine (N-acetyl-D-
galactosamine, GalNAc) (40). Iminosugars are found 
both free or as part of glycoproteins, glycolipids or 
polysaccharides, therefore, a previous hydrolysis 
step before their analysis is commonly necessary. 
Iminosugars are monosaccharides where the O atom 
in the cycle has been replaced by N atom such as 
fagomine and deoxynojirimycin (DNJ). The derivatives 
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including acetates (29), TMS derivatives (29,46,47), 
oximes derivatives (29) and alditol acetates (47,48) 
have been used for the analysis of amino sugars and 
iminosugars in sweet medicines. Derivatization methods 
of aminoglycosides have been reviewed before (49). 
Alditol acetates have been widely used for determination 
of neutral and basic monosaccharides simultaneously 
(50-52) however failed in uronic acids detection without 
forming methyl esters (52). The derivatization procedure 
including silylation, acetylation, oximation + acetylation 
and oximation + silylation have been compared for 
the analysis of iminosugars (DNJ and fagomine) and 
other low molecular weight carbohydrates. Results 
indicated that two-step derivatization including oximation 
+ acetylation and oximation + silylation allowed the 
separation of target compounds, whereas TMS and 
acetylated derivatives showed several co-elutions. 
Oximation + acetylation were discarded for giving 
inaccurate results for ketoses. TMSO formed by oximation 
+ silylation was successfully applied for simultaneous 
determination of iminosugars and other carbohydrates 
including mono-, di-saccharides and alditols (29).
 Currently, there is considerable interest in developing 
the simple and quick method for derivatization and 
separation of carbohydrates in complex matrices. 
Microwave-assisted derivatization has been successfully 
applied for carbohydrates analysis in complex matrix 
(53-56). Taking the advantage of high efficiency of 
microwave, the derivatization procedure could be 
significantly shortened. Silylation was finished within 
4 min with HMDS, BSTFA or MSTFA as derivative 
reagents (24). Microwave-assisted derivatization 
combined with comprehensive two-dimensional gas 
chromatography-time-of-flight mass spectrometry 
(2D GC-TOF-MS) has been successfully applied for 
carbohydrate analysis in complex extracts (57).
 Although some of the existing procedures for preparing 
GC derivatives are quite satisfactory, and some of them 
have even been improved, one of the goals of these 
methods to achieve only one chromatographic peak for 
each individual sugar seem to need further work. Generally, 
when the analytes composed of neutral carbohydrates 
(ketose and aldose), alditols and amino sugars, novel 
developed methyl sulfoxide (Me2SO)/1-methylimidazole 
system to acetylation is recommended (Figure 2a). 
Aldononitrile acetate is also a good choice for quantitative 
analysis of aldose (Figure 1, Table 1). Oximes and TMS 
derivitives are the alternative methods when ketose and 
aldose simultaneously existed (Figure 2b, Figure 1). 
When aldose, alditols, sugar acids, amino sugar as well as 
iminosugars taken into the considerations alditol acetates 
should be an ideal choice (Figure 2c and Figure 1).

2.2. Hydrolysis

Hydrolysis is a necessary and crucial step both in the 
compositional monosaccharide analysis and linkage 

analysis of polysaccharides. The hydrolysis conditions 
are varying depending on the nature of samples and their 
compositional sugars. The compositional sugars in sweet 
medicines are diverse, and additionally their chemical 
properties are varying. Therefore, different hydrolysis 
methods are developed for the accurate identification and 
quantification of sugars in sweet medicines.

2.2.1. Acidic hydrolysis

Acidic hydrolysis is the most commonly used methods 
for releasing monosacchardies. Two of the most common 
reagents for acidic hydrolysis are trifluoroacetic acid 
(TFA) and sulfuric acid. TFA is most commonly used for 
soluble polysaccharides such as isolated polysaccharides 
and secreted polysaccharides. It is volatile therefore 
easily be removed. It accounts 73% of hydrolysis in 
characterization of polymeric carbohydrates in sweet 
medicines shown in Figure 3, which is based on the 
data from 224 journal articles in web of science. While 
sulfuric acid commonly used for insoluble samples 
such as plant cell walls or samples difficult to complete 
hydrolysis (14). What's more the hydrolysis based on 
sulfuric acid need further cleanup to remove excessive 
and involatile sulfuric acid, which make the hydrolysis 
procedure more complex and time-consuming. However 
this problem partly solved when microscale analysis 
applied, samples hydrolyzed by sulfuric acid were 
neutralized with N,N-dioctylamine (DOM) in chloroform, 
followed by successive washes with the same solution. 
This procedure effectively removed the sulfuric acid 
and allowed derivatization of monosaccharides in one 
tube. However the chromatography achieved by this 
procedure is not as clean as the TFA hydrolysis, and 
unknown peaks will appear in the chromatogram (58). It 
should be noted that some acid-sensitive sugars would 
decompose during the acidic hydrolysis. Therefore, 
identification and quantification of these sugars by 
hydrolysis should be performed carefully. Fructose 
is easily decomposed under acidic conditions in both 
acid hydrolysis and methanolysis conditions (59,60). 
Some alternative methods have been developed to solve 
the problem such as enzymatic hydrolysis (61,62) or 

Figure 3. Hydrolysis methods used for releasing 
monosacharides (data from 224 journal articles collected in 
Web of Science mainly dated 2010-2014).
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determined by phenol-acetone-boric acid reagent (PABR) 
which introduced by Boratynski (60,63). Besides, 
anhydrosugars that are common in red/brown algal cell 
walls such as 3,6-anhydrogalactose need to be analyzed 
by reductive hydrolysis (64). Mild methanolysis is 
required for the detection of 3-deoxy-D-manno-oct-
2-ulosonic acid (KDO), which is used by bacteria in 
the synthesis of lipopolysaccharides (65-67). GlcNAc 
also easily destroyed during hydrolysis therefore 
mild acid condition or methanolysis is needed (68-
71). On the contrary, liberation of all monosaccharides 
from polysaccharides is also not easily achieved, 
especially uronic acid-containing polysaccharides 
because glycosidic linkages between uronic acids and 
other monosaccharides are acid resistant during acid 
treatments. Therefore the reduction of carboxylic groups 
of uronic acids into their corresponding hexoses or 
methanolysis is recommended to carry out to allow the 
complete liberation of monosaccharides (14,58). The 
strategy for releasing neutral, amino sugars and acidic 
sugars was proposed. Firstly for releasing the neutral and 
amino sugars from lipopolysaccharides, samples were 
hydrolyzed with 2 M TFA (120°C, 2 h). While to release 
acidic sugar components, lipopolysaccharides were 
subjected to methanolysis (1 M HCl in methanol, 85°C, 
16 h), finally the hydrolysis products were converted to 
alditol acetates for GC-MS analysis (66).
 Microwave-assisted hydrolysis of polymeric 
carbohydrates  showed i ts  power  in  complete 
glycosidic cleavage and conversion of polysaccharides 
into monosaccharides (72). The optimization of 
microwave-assisted hydrolysis and derivatization of 
hydroxyethylstarch showed that hydrolysis could be 
finished in 2 min at 1,200 W, 100oC and derivatization 
could be achieved within 5 min at 1,020 W, 100oC. The 
sample preparation time is greatly shortened by this 
procedure, compared with traditional hydrolysis and 
derivatization (73). It should be noted that optimization 
procedure should be carefully carried out to avoid the 
degradation of monosaccharides during the hydrolysis.

2.2.2. Enzymatic hydrolysis

Although it is not commonly used as acidic hydrolysis 
(only accounting for 1% of hydrolysis in Figure 3), 
enzymatic hydrolysis plays an irreplaceable role for 
its mild hydrolysis condition and avoiding sugar 
degradation. Enzymatic hydrolysis is commonly used 
for the analysis of fructose-rich carbohydrates (61,74) 
such as inulin and fructans. The amount of inulin in 
the samples was quantified for the QC as the amounts 
of hydrolyzed sugars (fructose, glucose and sucrose) 
after inulinase treatment minus the amounts of free 
sugars (the existing sugars in the original sample) (61). 
Enzymatic hydrolysis has also been used for releasing 
carbohydrates from plant-derived arabinoxylans and 
uronic acid-containing polysaccharides (62,75-77). The 

applications of enzymatic hydrolysis in the utilization 
and analysis of carbohydrates have been summarized in 
previous reviews (78-81).

2.2.3. Others

Methanolysis is another commonly used approach for 
releasing monosaccharides (accounting for 14% of 
hydrolysis in Figure 3) and is usually performed with HCl 
in anhydrous methanol. Monosaccharides are liberated as 
methyl glycosides and the carboxyl groups are esterified. 
Polysaccharides with the inclusion of uronic acid residues 
can be determined by methanolysis (14). Prebiotic 
oligosaccharides from Corylus avellana L., composed 
mainly of GalA and GalNAc, have been successfully 
quantified by methanolysis (1 M MeOH-HCl at 80°C for 
24 h) combined with TMS derivatives (82). 
 Generally, methanolysis and prereduction are 
highly recommended for uronic acids containing 
polysaccharides. Acidic hydrolysis is effective in 
most cases, when neutral and amino sugars are the 
compositional monosaccharides (Figure 1). Actually, the 
combination of different hydrolysis and derivatization 
methods certainly makes the results more reliable 
(47,83). The methanolysis (1 M MeOH-HCl at 80°C 
for 16 h) coupled with TMS derivatives and acid 
hydrolysis (4 N HCl at 100°C for 6 h) couple with 
alditol acetate derivatives were successfully applied for 
the identification of rare monosaccharides in O-antigen 
capsular polysaccharide from Francisella tularensis. GC-
MS analyses of TMS derivative, confirmed the presence 
of 2-acetamido-2,6-dideoxy-O-D-glucose (QuiNAc) in 
the sample. While GC-MS analyses of alditol acetates 
showed the presence of QuiNAc and 4,6-dideoxy-
4-formamido-D-glucose (Qui4NFm). Besides, two 
ionization modes were used in the identification, which 
CI could get fragments related to molecular weight 
whereas EI could get more fragment ion information 
(47). A combination of reductive acid hydrolysis and 
anhydrous mercaptolysis (0.5 M HCl in EtSH:MeOH 
(2/1, v/v) at 60°C, 6 h) was applied for selective 
hydrolysis of the 3,6-anhydrogalacotosidic linkage in 
red algal galactan (83). Acid hydrolysis, methanolysis, 
and enzymatic  hydrolysis  were compared for 
depolymerization of different plant materials containing 
uronic acids. Besides GC (using both HP-1 and HP-5 
capillary columns and FID and MS detectors), HPAEC-
PAD and HPAEC-Borate techniques also were compared 
for subsequent analysis of the released monosaccharides. 
It was shown that methanolysis combined with GC 
analysis is a convenient method for obtaining the 
sugar unit composition from uronic acids containing 
polysaccharides (76).

2.3. Methylation analysis

Since permethylation reaction was developed for the 



www.ddtjournal.com

Drug Discoveries & Therapeutics. 2015; 9(2):94-106.101

linkage analysis between sugar residues in the 1960s, 
it is a crucial analytical approach for the structural 
analysis of carbohydrates, called "methylation analysis" 
(84-86). Methylation analysis traditionally including 
permethylation-hydrolysis- reduction-acetylation 
procedures (Figure 4a) and complete permethylation 
is critical for the correct analysis (16). There are two 
most commonly used permethylation methods for 
carbohydrates analysis. One is the method introduced 
by Hakomori in 1964 (86), and the other is Ciucanu and 
Kerek introduced in 1984 (87). In Hakomori's method 
carbohydrates in dimethylsulfoxide (DMSO) is reacted 
with methyl iodide catalysed by the methylsulfinyl 
carbanion, which is prepared from sodium hydride 
(86). Sometimes with modification for the use of 
methylsulfinyl carbanion made with bases such as 
potassium hydride or butyl-lithium (16,21,88). Several 
years later, Ciucanu and Kerek developed a simple, 
rapid and quantitative procedure used finely powdered 
sodium hydroxide as base catalyst and DMSO as solvent 
(87). These two methods have been compared for the 
analysis of β-cyclodextrin (β-CD) and Hakomori method 
showed superior base catalyst than NaOH-DMSO 
suspension. Under the latter condition, premethylation 
of β-CD occurs selectively at 3-hydroxy groups, which 
may because the 3-hydroxy groups are buried within 
the relatively hydrophobic torus of β-CD where they 
are excluded from deprotonation by the NaOH base 
(89). In the same study, however, consistent with this, 
maltoheptoase, which is a linear form of β-CD, is 
permethylated equally well using either two methods. 
Even several mannose oligosaccharides are more 
completely permethylated using NaOH-DMSO (89). 
The conclusion is that permethylation conditions are 
not universally applicable to all carbohydrate types, 
and it is therefore recommended that the completeness 
of permethylation of carbohydrate samples should 
be checked before the acid hydrolysis step such as 
using infrared spectroscopy to monitor the hydroxyl 
residues. Besides many researches cited the methods 
described by Needs and Selvendran in 1993 (90). It is 
a modified sodium hydroxide-catalysed procedure, in 
which methylation with sodium hydroxide and methyl 
iodide is sequentially rather than simultaneously added 
into samples. The results showed that it was not prone 
to the oxidative deficiencies of the original and that, 
given its reduced tendency towards polysaccharide 
undermethylation. The preparation of permethylated 
carbohydrates for GC and LC analysis has been the 
subject of several reviews (91-93). 
 For the subsequent derivatization, hydrolysis is 
also necessary in methylation analysis. TFA is still 
the most frequently used hydrolysis reagents. And 
what should be noted is that acid-sensitive sugars such 
as fructose also need hydrolysis in mild conditions 
after permethylation (94). Then the hydrolyzed free 
methylated monosaccharide residues are commonly 

reduced by NaBH4/NaBD4 or NaBH4/NaBD4 in 
NH4OH and converted into alditols. Then the remaining 
hydroxyl groups acetylated with Ac2O/pyridine or 
Ac2O/1-methylimidazole. The final product partially 
methylated alditol acetates, known as PMAAs are 
subject to the GC-MS analysis (Figure 4b). The 
glycosidic linkage is concluded based on the retention 
time and mass spectrometry data (Figure 4c). Some 
databases have been built up to assist the analysis of 
these data. Such as Spectral Database for PMAA's 
which is initiated by Complex Carbohydrate Research 
Center is available online (95). Recently, researchers 
attempt to synthesize partially O-methylated alditol 
acetate standards of galactofuranose. These PMAAs 
could be used as GC-MS standards for simultaneous 
identification of galactofuranose units with diverse 
linkages in complex carbohydrates (96).
 Traditional methylation analysis commonly costs 
several days, of which the permethylation process 
takes most (97). Microwave-promoted methylation 
significantly shortens and simplifies this procedure. 
It was demonstrated that permethylation of plant seed 
gum with NaOH-dimethyl sulfate was completed 
in 4 min after exposure to microwave power. And 
subsequently hydrolysis with 70% aqueous formic 
acid and 0.5 N H2SO4 was finished in 3.32 min (97). 
Therefore microwave assistant methylation analysis 
is probably a wise choice to improve the methylation 

Figure 4. Methylation analysis of sweet medicines. a, 
procedures of methylation analysis; b, GC-MS chromatogram 
of PMAAs; c, mass spectrum of PMAAs. From Ref. (58), 
with permission.
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analysis efficiency. However, still, there are time-
consuming steps. By-products and excessive methylation 
agents should be separated with partially methylated 
carbohydrates before hydrolysis. And dialysis or 
extraction with organic solvents such as dichloromethane 
and chloroform are performed. Extraction partially 
methylated carbohydrates by organic solvents is simple 
and time-saving. After three or more times extraction 
with organic solvents and wash with water, the organic 
layer could be separated and obtained the purified 
partially methylated carbohydrates. However, solvent 
extraction is not suitable for the high molecular weight 
polysaccharides because of poor solubility (58). Dialysis 
is commonly adopted for these polysaccharides. 
However, dialysis is usually performed "over night". So 
far, it has still been the rate-limited step in methylation 
analysis, which needs further improvements. 
 Even though methylation analysis could provide 
abundant information about the characterization of 
carbohydrates, it still could not give the definite linkage 
of polymeric carbohydrates for the mass spectrum of 
some PMAAs are highly similar. Accurate identification 
of structures must combine with other approaches such 
as MALDI-TOF-MS (16), characteristic enzymatic 
digestion (13) and NMR (65).

2.4. Pyrolysis-gas chromatography (Py-GC)

Pyrolysis-gas chromatography (Py-GC) has been well 
established as a simple, quick and reliable analytical 
technique for a range of applications including the 
analysis of polymeric materials (98,99). The most 
important application of Py-GC in carbohydrates 
analysis is characterization of cellulose, hemicellulose 
and plant gum (100-103). Derivatizations including 
methylation and silylation are also necessary of Py-GC 
for improving the behavior of analytes during separation 
in the column, modifying the thermal degradation 
pathway or enhancing detectability (98). The derivative 
reagent including TMCS (103), BSTFA (103,104) and 
HMDS (105,106) are most commonly used. Recently, 
on-line analysis of thermally assisted hydrolysis and 
methylation (THM) gas chromatography commonly 
used tetramethylammonium hydroxide (TMAH) (107-
109) as base reagents, made the analysis simpler and 
faster (99). Pyrolysis GC-MS as a novel analysis 
technique to determine the biochemical composition 
including carbohydrate  has  been appl ied  for 
microalgae. The results showed that a linear trend was 
observed and the method could give a quick estimation 
of carbohydrate contents (110). The medicinal plant 
Ginkgo biloba was also successfully identified by 
THM-GC (111). The greatest advantage of pyrolysis is 
that, in most cases, only minimal sample preparation is 
required. Therefore, Py-GC is a promising method for 
quick identification of sweet medicines and is useful in 
the QC of sweet medicines (Figure 1). 

3. Quantification analysis

Quantitation is crucial for QC of sweet medicines. 
Compared with free carbohydrates,  polymeric 
ca rbohydra tes  such  as  o l igosacchar ides  and 
polysaccharides are more difficult to quantify due to 
their large molecular weights, complex structures and 
rare of chemical standards (4). However, separation 
and quantification are possible for free carbohydrates 
(including mono-, di- and trisaccharides) by GC-MS 
(24,112). Therefore, suitable hydrolysis of polymeric 
carbohydrates (discussed in Section 2.2) combined 
with efficient derivatization methods (discussed in 
Section 2.1) is an alternative method to quantify the 
carbohydrates in sweet medicines for QC. 
 Monosaccharide profile has been successfully 
applied for QC of Dendrobii Officinalis Caulis, 
which is a rare medicinal plant (113). Chinese 
Pharmacopoeia (2010 Edition) documented that the 
ratio of mannose and glucose in Dendrobii Officinalis 
Caulis should be 2.4-8.0 (114). The monosaccharide 
profiles released from polysaccharides have also been 
used to discriminate different sweet medicines and 
identify their origins (115-118). The results of those 
studies indicate that free sugars or sugar profiles 
obtained after acidic or enzymatic hydrolysis (i.e., 
amounts and composition of monosaccharides) are 
crucial for QC of polysaccharides. On the other 
hand, the characteristic chromatography of PMAAs 
achieved by GC-MS which reflects the glycosidic 
linkages is also could be applied for the discrimination 
of original for sweet medicines, however many works 
should be carry on to make the procedures involved 
in methylation analysis more efficient, automated and 
high-throughput.

4. Conclusion

Biological activities of sweet medicines are highly 
correlated with their chemical characteristics. The 
qualitative and quantitative analyses of both free 
and polymeric active carbohydrates are necessary 
for QC of sweet medicines. GC coupled with MS, 
which provides abundant structure and quantitative 
information, is very helpful in improving QC of sweet 
medicines.
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