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HDAC1/3 dual selective inhibitors - New therapeutic agents for the 
potential treatment of cancer
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Histone deacetylases (HDACs) are a class of zinc-
dependent metalloproteinases that catalyze the removal 
of acetyl groups from lysine residues on histones and 
non-histone proteins. This action results in a “closed” 
chromatin configuration, thereby regulating the 
expression of genes, which include tumor suppressor 
genes (1,2). HDAC inhibitors (HDACIs) have attracted 
a great deal of interest as anticancer drug agents. Over 
the past 10 years, over 490 clinical trials of more 
than 20 HDACI candidates as anticancer agents have 
been conducted. Three HAACIs, vorinostat (SAHA, 
Zolinza®), romidepsin (FK-228, Istodax®), and 
belinostat (PXD101, Beleodaq®) have been approved 
for the treatment of hematologic tumors. In clinical use 
as anti-cancer agents (such as vorinostat, panobinostat, 
belinostat, and abexinostat), many HDACIs inhibit a 
broad spectrum of HDACs, including Class Ι  , II, and 
IV isoforms. Although these HDACIs have promising 
efficacy in treating specific tumors, they all exhibit 
significant toxicity, including fatigue, nausea, vomiting, 
thrombocytopenia, and neutropenia (3). Thus, increased 
effort is being directed toward developing HDACIs that 

selectively inhibit certain classes or a single isoform. 
This should result in agents that are tolerated better 
and cause fewer adverse reactions. Several selective 
Class I,     class IIa, and HDAC6 inhibitors (Figure 1) 
have been reported, but only a few selective Class I 
inhibitors are used clinically (4-7). Selective HDAC6 
inhibitors are expected to be benefi cial since they may 
cause fewer adverse reactions. However, the literature 
indicates that such small molecules have not played a 
prominent role in cancer therapy, with the exception 
of their combination with other chemotherapeutics 
(8). Selective Class I HDACIs such as MS-275 and 
MGCD0103 (HDAC1, 2, and 3-selective) are the 
most studied selective HDACIs in clinical use or in 
development. However, these therapeutic have been 
found to have similar toxicity profiles and overall 
tolerability in comparison to pan-HDACIs (9). A 
reasonable explanation for this is that selective Class I 
HDACIs in clinical use may not be selective enough to 
offer a superior therapeutic benefi t over pan-inhibitors. 
Given this fact, several improved selective inhibitors 
have been described (Figure 2). These inhibitors have 
better potency and selectivity for HDAC1 and 2 versus 
HDAC3 (10,11). Medicinal chemists have worked to 
develop more selective HDACIs, such as inhibitors 
targeting individual isoforms.
 Recently, a s eries of N-hydroxycinnamamide-based 
HDA  C 1/3 dual inhibitors were described by the current 
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authors’ laboratory. This work represents the fi rst report 
of such selective inhibitors with oral activity. The 
representative compound 11r had low nanomolar IC50 
values in response to HDAC1 (11.8 nM) and HDAC3 
(3.9 nM) and micromolar or submicromolar IC50 values 
in response to other HDACs such as HDAC2, HDAC4, 
HDAC6, HDA8, and HDAC11 (Figure 3). Both in vitro 
and in vivo studies demonstrated that these HDAC1/3 

dual inhibitors could help treat cancer. In vitro, some of 
the selective inhibitors block the proliferation of cancer 
cell lines, including those of solid and hematologic 
tumor cells, better than pan-HDACI vorinostat (Table 
1). Western blot analysis of procaspase 3 and flow 
cytometry analysis revealed that the potent HDAC1/3 
dual selective inhibitors significantly induce cancer 
cell apoptosis in a time-dependent and dose-dependent 
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Figure 1. Examples of selective Class Ι and Class IIa HDACIs and a selective HDAC6 inhibitor

Figure 2. Example of a selective HDAC1/2 inhibitor

Figure 3. Selective HDAC1/3 inhibitors (12)
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disease and Friedreich’s ataxia. Thus far, a phase Ι 
clinical study of selective Class ΙHDACI RG2833 for 
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HDACIs have the potential to exhibit such antifungal 
activity. The anticancer activity of selective HDAC1/3 
inhibitors has been verifi ed, but their potential use in 
other ways, such as treatment of neurodegenerative 
disorders and fungal infection, has yet to be explored. 
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Compound

11r
SAHA

U937
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1.45

K562

0.51
3.24

HEL

0.19
0.49

KG1

0.22
1.59

HL60

1.69
4.26

MDA-MB-231

0.22
1.72

PC-3

0.46
3.57

MCF-7

2.68
3.78

HCT116

0.52
2.81

A549

2.74
3.90

IC50 (μM)

Table 2. In vivo antitumor activity of representative 
compound 11r and positive control SAHA* (12)

Compound

11r
SAHA

Relative increment ratio
(T/C)

37%
47%

Tumor growth inhibition
(TGI)

55.1%
32.1%

* An in vivo study was conducted using a subcutaneous U937 
xenograft model. Treatment groups were given compound 11r (100 
mg/kg/d) or SAHA (100 mg/kg/d) orally for 16 days.
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