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Up-frameshift protein 1 (UPF1): Multitalented entertainer in RNA decay
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ABSTRACT: Up-frameshift protein 1 (UPF1) is an 
evolutionarily conserved protein with RNA/DNA-
dependent ATPase and RNA helicase activity. The 
protein is well known for its central role in nonsense-
mediated mRNA decay (NMD), which eliminates 
aberrant mRNAs harboring premature termination 
codon (PTC), preventing the accumulation of 
nonfunctional or potentially harmful truncated 
proteins. NMD is also involved in the regulation of the 
state-levels of many normal physiological mRNAs. 
Moreover UPF1 is not only a key player in NMD 
but is also involved in non-NMD RNA degradation, 
such as staufen1 (STAU1)-mediated mRNA decay 
(SMD) and replication-dependent histone mRNA 
decay. Thus, UPF1 is an important factor for the 
RNA quality control system and the regulation 
of physiological gene expression. Further, recent 
studies have clarified that UPF1 contributes to DNA 
replication, DNA repair, telomere metabolism, and 
stabilization of HIV-1 genomic RNA. In the review, 
we summarize numerous functions of UPF1.
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1. Introduction

Up-frameshift protein 1 (UPF1) is evolutionarily 
conserved and ubiquitously expressed phosphoprotein 
with RNA/DNA-dependent ATPase and RNA helicase 
activity (1). UPF1 has been characterized as an essential 
factor for nonsense-mediated mRNA decay (NMD), 
which eliminates aberrant mRNAs harboring premature 
termination codon (PTC) generated by a nonsense 
mutation or frameshift (2). NMD is one of the important 

RNA surveillance mechanisms, which prevent the 
accumulation of nonfunctional or potentially harmful 
truncated proteins (3,4). The pathway is also involved in 
regulating the expression of 1-10% normal physiological 
mRNAs (5). UPF1 interacts with several NMD factors, 
such as UPF2, NCBP1 (also known as CBP80), SMG1, 
SMG5-SMG7, SMG6, and eRF1-eRF3 (6-16). In 
addition to its role in quality control mechanism by NMD, 
UPF1 also functions two non-NMD decay pathways: 
staufen1 (STAU1)-mediated mRNA decay (SMD) and 
replication-dependent histone mRNA decay. SMD, unlike 
NMD, involves in the regulation of functional mRNAs 
harboring double-stranded RNA region called STAU1-
binding site (SBS) in their 3'-untranslated region (3' UTR) 
(17,18). Replication-dependent histone mRNA decay 
degrades cell cycle-regulated histone mRNAs harboring 
stem-loop structure in the 3' UTR (19). Thus, UPF1 is 
an important factor in RNA surveillance mechanism 
for the degradation of abnormal mRNAs and the post-
transcriptional regulation of gene expression for the 
degradation of normal mRNAs.
 Interestingly, recent studies have revealed that UPF1 
is not only a key player in several RNA degradation 
pathways but is also involved in several unique roles 
such as DNA replication, DNA repair, telomere 
metabolism, and stabilization of HIV-1 genomic RNA. 
UPF1 physically interacts with the DNA polymerase 
δ during S-phase of the cell cycle, controls telomere 
length and telomeric silencing, and regulates the HIV-1 
RNA metabolism and translation (20-23). In the review, 
we describe that the roles of UPF1 in RNA surveillance 
mechanism, the post-transcriptional regulation of 
physiological mRNAs, and several unique functions in 
the cells.

2. Evolutional conservation of UPF1

UPF1 (Figure 1) was originally isolated in yeast (24). 
UPF1 is known as regulator of nonsense transcript 1 
(Rent1) in mice, and suppressor with morphogenetic 
defects in genitalia 2 (Smg2) in fruitfly (1,25). For 
UPF1, the sequence identities among human, plant, 
fruitfly, nematode, and yeast are between 40-62% 
compared to 59-67% for ribosomal proteins. Especially, 
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the sequence identities among zebrafish, mouse, and 
human are over 90% (26). Thus, UPF1 is highly 
conserved throughout eukaryotes. High evolutional 
conservation suggests its importance in biological 
systems. Actually, UPF1 is essential for embryonic 
viability in plant, fruitfl y, zebrafi sh, and mice (27-31). 
For instance, loss of UPF1 function inhibits cell growth 
and induces apoptosis in Drosophila melanogaster (27). 
Thus, UPF1 plays important roles in various organisms.

3. Nonsense-mediated mRNA decay (NMD)

RNA degradation, as well as RNA transcription, plays 
a crucial role in the regulation of gene expression. 
RNA degradation can be divided into two classes; the 
mechanisms for regulating of gene expression and the 
mechanisms for rapidly degrading aberrant mRNAs 
(32). Generally, mRNA decay rates of house-keeping 
genes are slow, while those of regulatory genes such 
as transcription factor and replication-dependent 
histones are comparatively fast (33). The expression 
level of regulatory genes is frequently modulated by 
RNA decay pathway (34). Rapid degradation is also 
occurred by the generation of aberrant mRNAs, such 
as mRNAs harboring PTC (35). NMD is best known 
as mRNA surveillance mechanism for the elimination 
of such aberrant PTC-containing mRNAs generated 
as a result of a nonsense mutation or frameshift (3,4). 
Previous bioinformatic analyses predicted that one-third 
alternatively spliced transcripts have the potential to 
contain PTCs, which trigger NMD (36). Thus, the NMD 
pathway is essential to ensure the fi delity of transcripts, 
preventing the production of harmful truncated proteins 
with dominant-negative or deleterious gain-of-function 
activities and, as a consequence, human diseases 

(37,38). Interestingly, NMD contributes to not only the 
degradation of aberrant mRNAs harboring PTC, but 
also the regulation of normal physiological mRNAs. 
The previous studies suggested that NMD is involved in 
the degradation of 1-10% physiological transcripts from 
a wide variety of species, including yeast, nematode, 
fruitfl y, plants, and mammals (5,39-47).
 The NMD pathway in human cells comprises 
the factors UPF1, UPF2, UPF3A, UPF3B, SMG1, 
SMG5, SMG6, SMG7, SMG8, SMG9, NAG, and 
DHX34 (4,48). Among these factors, the UPF proteins 
constitute the core NMD machinery. Of all the UPF 
genes, UPF1 is functionally the most important 
factor for NMD (26,49). Newly synthesized mRNAs 
harbor cap-binding protein heterodimer NCBP1-
NCBP2 (also known as CBP80-CBP20) at the 5' cap 
structure and exon-exon junction complex (EJC) 
as result of precursor mRNA (pre-mRNA) splicing 
(32,50). An important step in NMD is the translation-
dependent recognition of transcripts with aberrant 
termination events and then targeting those mRNAs 
for degradation. EJC, deposited 20-24 nucleotides 
upstream of exon-exon junctions, plays a central role 
to distinguish aberrant PTC-containing mRNA from 
normal mRNA in mammalian cells (51). Although 
EJCs locating within an open reading frame (ORF) 
are removed by elongating ribosomes, EJCs locating 
downstream of the termination codon remain associated 
with the ribonucleoprotein (RNP) (52). This remaining 
EJC during a pioneer round of translation recruits NMD 
factors, including UPF1, to PTC-containing mRNAs 
and stimulates mRNA degradation (51). NCBP1-
NCBP2 complex is also retained in PTC-containing 
mRNAs during the pioneer-round of translation (3,4). 
UPF1 interacts with NCBP1, and this interaction 
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Figure 1. The structure of UPF1 protein. Schematic diagram explaining domains of human UPF1 protein. Cysteine/histidine-
rich domain (CH domain) is present at N-terminus. Helicase domain is important for NMD. Serine/glutamine motif (SQ motif) is 
present at C-terminus. The numbers above the schematic diagram represent the animo acid positions of the domain or the motif 
boundary. The alphameric characters below the schematic diagram represent the phosphorylated positions. Phosphorylation of 
UPF1 at T28 is important for SMG6 binding to UPF1. Phosphorylation of UPF1 at S1096 is important for SMG5/SMG7 binding 
to UPF1. UPF1 is phosphorylated by SMG1 at SQ motif. The binding site of each NMD factor is represented below the schematic 
diagram. a.a., amino acids.



www.ddtjournal.com

Drug Discoveries & Therapeutics. 2012; 6(2):55-61. 57

oskar mRNAs at the posterior pole during oogenesis 
(61). Mammalian genomes encode two homologous 
Staufen genes, STAU1 and STAU2, although the 
functional discrimination between STAU1 and STAU2 
is largely unknown (62). STAU1 is involved in the 
degradation of certain mRNAs containing SBS in their 
3' UTR. SBS is divided into two groups: intramolecular 
base-pairing within a 3' UTR or intermolecular base-
pairing between an mRNA 3' UTR and a long noncoding 
RNA named half-STAU1-binding site RNAs (1/2-
sbsRNAs) (17,63). STAU1-dependent RNA degradation 
is named as SMD (64). SMD targets not only NCBP1-
NCBP2-bound mRNAs but also eIF4E-bound mRNAs. 
SMD does not require EJC for the target selection (15). 
To date, the best-characterized SMD target is ADP-
ribosylation factor 1 (ARF1) mRNA, containing a 19-
bp stem loop structure recognized by STAU1 (17). 
Plasminogen activator inhibitor 1 (SERPINE1) and 
paired box 2 (PAX2) mRNAs are also targeted by SMD 
(14). In contrast to NMD, SMD regulates the stability of 
mRNAs encoding functional protein, namely, regulates 
physiological transcripts (18). NMD and SMD share 
several features; both systems require translation 
process (7). UPF1 is also involved in SMD through the 
direct binding with STAU1 (17). Hence, UPF1 regulates 
physiological transcripts as well as NMD-targeted 
mRNAs.
 Intriguingly, recent studies revealed that SMD and 
NMD pathways fight over UPF1. STAU1-binding 
domain within UPF1 is overlapped with UPF2, a 
core factor of NMD. siRNA-mediated knockdown 
of STAU1, which inhibits SMD, increases the NMD 
activity while siRNA-mediated knockdown of UPF2, 
which consequently inhibits NMD, increases SMD 
(64). Moreover, the differentiation of myoblasts 
to myotubes in the mouse skeletal C2C12 cells is 
associated with the decreased contribution of SMD 
and the increased contribution of NMD. For example, 
the mRNA expression level of SMD targets such as 
JUN or SERPINE1 are decreased upon differentiation 
while those of NMD targets such as BAG1 or TGM2 
are increased (64). The competition of SMD and NMD 
also contributes to the differentiation process. PAX3 
mRNA, which inhibits myogenic differentiation, is an 
SMD target while myogenin mRNA, which encodes a 
protein required for myogenesis, is a UPF2-dependent 
NMD target (64). Thus, the interaction between SMD 
and NMD pathways forms an important gene expression 
network, where UPF1 plays a central role.

5. Replication-dependent histone mRNA decay

Histone proteins are essential  components of 
chromosomes. In mammalian cells, the regulation 
of histone proteins is coupled to the rate of DNA 
replication. Replication-dependent histone genes encode 
the core histones (H2A, H2B, H3, and H4) and the 

contributes to the process of NMD at the initial step (16). 
The NCBP1-UPF1 interaction promotes the binding of 
SMG1-UPF1 to eRF1-eRF3 so as to form the SURF 
(SMG1-UPF1-eRF1-eRF3) complex and then promotes 
the interaction of SMG1-UPF1 with EJC (6-9,15,16,51). 
Thus, UPF1 plays a central role in NMD pathway, 
especially initial step.
 UPF1 regulates the degradation of NMD-sensitive 
mRNAs and the remodeling of the mRNA surveillance 
complex through phosphorylation/dephosphorylation 
cycle (10-14). Namely, UPF1 is phosphorylated 
by SMG1, a phosphatidylinositol 3-kinase-related 
protein kinase (PIKK), at specific serine residues in its 
C-terminus serine/glutamine motifs (SQ motifs: 924-
1,118 amino acids) (10,11). UPF1 phosphorylation 
facilitates the assembly of degradation factor, 
consequently, triggers the degradation of NMD-
sensitive mRNAs (53). RNA degradation requires for 
the assembly of degradation factors and translational 
repression during NMD. UPF1 phosphorylation 
triggers eIF3-dependent translational repression during 
the process of NMD. Phosphorylated UPF1 but not 
hypophosphorylated UPF1 directly interacts with eIF3, 
a component of the 43S pre-initiation complex and 
then prevents the joining of 60S ribosomal subunit 
(54). Thus, UPF1 phosphorylation induces translational 
repression. Moreover, phosphorylated UPF1 also 
interacts with SMG5, SMG6, SMG7, and human 
proline-rich nuclear receptor coregulatory protein 2 
(PNRC2) and then triggers the degradation of NMD-
sensitive mRNAs (53,55-59). The association of SMG6 
with phosphorylated UPF1 triggers RNA degradation by 
SMG6 endonuclease (SMG6-mediated endonucleolytic 
decay) (55,56,58,59). In contrast, the association of 
heterodimer SMG5/SMG7 with phosphorylated UPF1 
triggers RNA degradation by deadenylase and decapping 
enzyme (SMG5/SMG7-mediated exonucleolytic decay) 
(57,59). PNRC2 interacts with UPF1 and DCP1a, a 
component of decapping complex. The mediation of 
PNRC2 triggers 5'-to-3' exonucleolytic decay (53). 
However, the biological importance of multiple decay 
pathways is still unclear.
 Disassembly of mRNP complex is critical in 
the final step of RNA degradation. The recent study 
revealed that ATP hydrolysis by UPF1 leads to 
disassemble mRNP complex targeted to NMD (60). 
Thus, disassembly of mRNP complex by UPF1 is 
involved in recycling of NMD factors and other RNA-
binding proteins derived from NMD substrates and 
UPF1 ATPase activity plays an important role in 
ATPase-dependent mRNP disassembly in NMD.

4. Staufen1-mediated mRNA decay (SMD)

Staufen, a double-stranded RNA-binding protein, was 
originally identifi ed as maternal factor required for the 
localization of bicoid mRNAs at the anterior pole and 
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linker histones (H1). The expression of histone mRNAs 
increases when cells progress G1 to S phase of the cell 
cycle, and these mRNAs rapidly decrease at the end of 
S phase. Regulation of histone mRNA levels contributes 
for the coordination between DNA replication and 
chromatin assembly during S phase to ensure the proper 
replication of chromatin structure (65,66). The rapid 
destabilization of mRNA mainly contributes to rapidly 
reduce the mRNA level. Therefore, rapid degradation 
of histone mRNAs plays a crucial role in a main 
regulatory step to ensure proper histone mRNA levels 
at the end of S phase. Transcripts encoding histone 
proteins lack polyadenylated tails, although they are 
transcribed by RNA polymerase II (19). This conjures 
up an image of presence of special mechanism for the 
regulation of histone mRNA stabilities. Actually, 3' 
UTRs of replication-dependent histone mRNAs harbor 
the special stem-loop structure that is required for rapid 
regulatory degradation of histone mRNAs (19,66). 
The structure at the 3' end of histone mRNA interacts 
with the stem-loop binding proteins (SLBP) (65,66). 
UPF1 plays a crucial role in histone mRNA degradation 
through an interaction with SLBP at the end of S phase 
or after the inhibition of DNA synthesis (19). Moreover, 
the function of UPF1 in histone mRNA degradation 
is regulated by phosphorylation (19,67). The serine/
glutamine motifs (SQ motifs) and threonine/glutamine 
motifs (TQ motifs) of UPF1 are phosphorylated by 
phosphatidylinositol 3-kinase-related protein kinase 
(PIKK) family (11). The phosphorylation of UPF1 
triggers histone mRNA degradation (19,67).
 Ataxia telangiectasia mutated (ATM) and DNA-
dependent protein kinase (DNA-PK) are mainly 
activated by double-strand breaks (DSBs) generated 
by ionizing radiation. Ataxia telangiectasia and Rad3   
related (ATR) is by single stranded DNA and stalled 
replication forks generated by UV light, replication 
block, and hypoxia. ATR, DNA-PK, and ATM are 
other members of the PIKK family (68). Recent studies 
revealed that the phosphorylation activity of ATR and 
DNA-PK but not ATM is required for histone mRNA 
degradation after the inhibition of DNA synthesis (67). 

6. S phase progression & DNA replication

Recent studies revealed that UPF1 physically interacts 
with DNA polymerase δ and is crucial to S phase 
progression and DNA replication in NMD-independent 
manner (20,69). It was found that 4% of UPF1 proteins 
were bound chromatin-associated protein fraction 
while UPF1 mostly exists in the soluble fraction. The 
amount of chromatin-associated UPF1 is low in M 
phase and early G1 phase, starts to increase in mid-
G1, and is highest level in S phase. Depletion of 
UPF1 but not UPF2 results in an early S phase arrest 
and stalls replication fork progression (20,69). This 
inhibition of replication fork progression triggers ATR-
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dependent DNA damage response and replication 
block (64,70). UPF1 may be involved in DNA damage 
response in S phase of the cell cycle. In support of the 
physiological importance of UPF1 in S phase, UPF1 
depletion also induces the accumulation of nuclear foci 
containing a sensitive marker for DNA damage such 
as phosphorylated histone H2AX (γ-H2AX) (20,69). 
Moreover, chromatin-associated and phosphorylated 
UPF1 are reduced in cells depleted for ATR, while 
UPF1 accumulates on the chromatin in cells irradiated 
gamma-ray for induction of DNA damage (20,69). 
Those results suggest that gamma-ray irradiation 
triggers ATR-mediated phosphorylation and then 
chromatin-associated UPF1 is phosphorylated by active 
ATR. Futhermore, UPF1 interacts with the p66 subunit 
and p125 catalytic subunit of DNA polymerase δ. In 
contrast, UPF2 does not detectably interact with DNA 
polymerase δ. UPF1 may assist DNA polymerase δ to 
trigger replication fork progression or DNA repair in 
NMD-independent manner (20,69). Thus, UPF1 plays 
an important role in DNA replication and S phase 
progression through non-NMD pathway.

7. Telomere homeostasis

Telomeres are the heterochromatic structures located 
at the end of eukaryotic chromosomes. In mammal, 
telomeres consist of tandem arrays of duplex 5'-
TTAGGG-3' repeats. The structure plays a crucial role 
in genome stability at the cellular level and contributes 
to tumor suppressors at the organismal level (71). There 
are a lot of proteins associated with telomeric DNA 
and these proteins are involved in telomere length 
regulation and telomere protection. The association of 
NMD factor with telomere function was previously 
reported. Mutations of UPF1, UPF2, and UPF3 shorten 
telomere length and reduced telomeric silencing in 
Saccharomyces cerevisiae (72,73). UPF mutant strains 
lead to increased mRNA levels of telomere-related 
proteins such as telomerase catalytic subunit (EST2), 
regulators of telomerase (EST1, EST3, STN1, and 
TEN1), and telomeric chromatin structure-related genes 
(SAS2 and ORC5) (73).
 Te l o m e r e s  o r i g i n a l l y  a r e  b e l i e v e d  t o  b e 
transcriptionally silent. However, recent studies 
revealed that telomeric repeats are transcribed by DNA-
dependent RNA polymerase II into telomeric repeat-
containing RNA (TERRA: also known as TelRNA) 
(72-74). TERRA is a long-noncoding RNA in animals 
and fungi, co-localizes with telomeres not only in 
interphase cells but also in transcriptionally inactive 
metaphase cells and blocks the activity of telomerase, 
a reverse transcriptase-like enzyme required for the 
maintenance of telomere length. Knockdown of UPF1, 
SMG1 or SMG6 leads to increase the number of 
telomere-associated TERRA foci on RNA fl uorescence 
in situ hybridization (RNA-FISH). However, neither 
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the mRNA expression level nor the half-life of 
TERRA are not increased in cells depleted for UPF1 
or SMG6 on northern blot (73,74). Thus, NMD factors 
including UPF1 may be not likely to be involved in the 
degradation of TERRA and be only required for the 
disassembly of TERRA and telomeres. Otherwise, there 
is the possibility that those NMD factors are involved 
in TERRA degradation locally at the telomere because 
the local change of TERRA mRNA level may be 
undetectable on northern blot.

8. HIV-1 genomic RNA stability

The stability of viral genomic RNA is crucial to a 
successful viral infection and proper replication within 
the cells. Therefore, viral RNAs have an ability to avoid 
RNA degradation by the host machinery. Interestingly, 
viruses have evolved mechanisms not only to escape 
the elimination by these decay pathways, but also to 
manipulate them for enhanced viral replication and 
gene expression (75).
 The HIV-1 RNP consists of HIV-1 genomic RNA, 
pr55Gag (the major structural protein), STAU1 (the host 
protein) (76,77). Recent study revealed that UPF1 
is one of HIV-1 RNP components and is involved in 
HIV-1 genomic RNA stability (23). Knockdown of 
UPF1 decreases the level of HIV-1 genomic RNA and 
pr55Gag synthesis. Conversely, overexpression of UPF1 
increases the level of HIV-1 genomic RNA and pr55Gag 
synthesis (23). The effects of UPF1 on HIV-1 genomic 
RNA stability are dependent on ATPase domain of 
UPF1 but not the association of UPF1 with UPF2 (23). 
Thus, the association of UPF1 with HIV-1 genomic 
RNA is important for the stability of the virus RNA, 
and the effect may be on NMD-independent manner.

9. Conclusion

UPF1 was originally known as a central factor in NMD. 
As we have seen in this review, UPF1 is a multitalented 
entertainer to be involved in RNA surveillance, the 
regulation of physiological transcripts, DNA replication, 
S phase progression, telomere homeostasis, and HIV-1 
metabolism (Figure 1). However, the overview of 
UPF1 is still unclear. It is hoped that future studies 
will uncover new insights into the complicated roles of 
UPF1.

References

1. Applequist SE, Selg M, Raman C, Jack HM. Cloning 
and characterization of HUPF1, a human homolog of 
the Saccharomyces cerevisiae nonsense mRNA reducing 
UPF1 protein. Nucleic Acids Res. 1997; 25:814-821.

2. Bhattacharya A, Czaplinski K, Trifillis P, He F, Jacobson 
A, Peltz SW. Characterization of the biochemical 
properties of the human Upf1 gene product that is 
involved in nonsense mediated mRNA decay. RNA. 

2000; 6:1226-1235.
3. Chang YF, Imam JS, Wilkinson MF. The nonsense-

mediated decay RNA surveillance pathway. Annu Rev 
Biochem. 2007; 76:51-74.

4. Nicholson P, Yepiskoposyan H, Metze S, Zamudio 
Orozco R, Kleinschmidt N, Muhlemann O. Nonsense-
mediated mRNA decay in human cells: Mechanistic 
insights, functions beyond quality control and the 
double-life of NMD factors. Cell Mol Life Sci. 2010; 
67:677-700.

5. Mendell JT, Sharifi NA, Meyers JL, Martinez-Murillo 
F, Dietz HC. Nonsense surveillance regulates expression 
of diverse classes of mammalian transcripts and mutes 
genomic noise. Nat Genet. 2004; 36:1073-1078.

6. Kadlec J, Guilligay D, Ravelli RB, Cusack S. Crystal 
structure of the UPF2-interacting domain of nonsense-
mediated mRNA decay factor UPF1. RNA. 2006; 
12:1817-1824.

7. Chamieh H, Ballut L, Bonneau F, Le Hir H. NMD 
factors UPF2 and UPF3 bridge UPF1 to the exon 
junction complex and stimulate its RNA helicase activity. 
Nat Struct Mol Biol. 2008; 15:85-93.

8. Czaplinski K, Ruiz-Echevarria MJ, Paushkin SV, Han 
X, Weng Y, Perlick HA, Dietz HC, Ter-Avanesyan MD, 
Peltz SW. The surveillance complex interacts with the 
translation release factors to enhance termination and 
degrade aberrant mRNAs. Genes Dev. 1998; 12:1665-
1677.

9. Ivanov PV, Gehring NH, Kunz JB, Hentze MW, Kulozik 
AE. Interactions between UPF1, eRFs, PABP and the 
exon junction complex suggest an integrated model for 
mammalian NMD pathways. EMBO J. 2008; 27:736-
747.

10. Denning G, Jamieson L, Maquat LE, Thompson EA, 
Fields AP. Cloning of a novel phosphatidylinositol 
kinase-related kinase: Characterization of the human 
SMG-1 RNA surveillance protein. J Biol Chem. 2001; 
276:22709-22714.

11. Yamashita A, Ohnishi T, Kashima I, Taya Y, Ohno S. 
Human SMG-1, a novel phosphatidylinositol 3-kinase-
related protein kinase, associates with components of 
the mRNA surveillance complex and is involved in the 
regulation of nonsense mediated mRNA decay. Genes 
Dev. 2001; 15:2215-2228.

12. Ohnishi T, Yamashita A, Kashima I, Schell T, Anders 
KR, Grimson A, Hachiya T, Hentze MW, Anderson P, 
Ohno S. Phosphorylation of hUPF1 induces formation of 
mRNA surveillance complexes containing hSMG-5 and 
hSMG-7. Mol Cell. 2003; 12:1187-1200.

13. Anders KR, Grimson A, Anderson P. SMG-5, required 
for C.elegans nonsense-mediated mRNA decay, 
associates with SMG-2 and protein phosphatase 2A. 
EMBO J. 2003; 22:641-650.

14. Chiu SY, Serin G, Ohara O, Maquat LE. Characterization 
of human Smg5/7a: A protein with similarities to 
Caenorhabditis elegans SMG5 and SMG7 that functions 
in the dephosphorylation of Upf1. RNA. 2003; 9:77-87.

15. Hosoda N, Kim YK, Lejeune F, Maquat LE. CBP80 
promotes interaction of Upf1 with Upf2 during 
nonsense-mediated mRNA decay in mammalian cells. 
Nature Struct Mol Biol. 2005; 12:893-901.

16. Hwang J, Sato H, Tang Y, Matsuda D, Maquat LE. 
UPF1 association with the cap-binding protein, CBP80, 
promotes nonsense-mediated mRNA decay at two 
distinct steps. Mol Cell. 2010; 39:396-409.



www.ddtjournal.com

Drug Discoveries & Therapeutics. 2012; 6(2):55-61. 60

17. Kim YK, Furic L, Desgroseillers L, Maquat LE. 
Mammalian Staufen1 recruits Upf1 to specific mRNA 
3'UTRs so as to elicit mRNA decay. Cell. 2005; 120:195-
208.

18. Kim YK, Furic L, Parisien M, Major F, DesGroseillers 
L, Maquat LE. Staufen1 regulates diverse classes of 
mammalian transcripts. EMBO J. 2007; 26:2670-2681.

19. Kaygun H, Marzluff WF. Regulated degradation of 
replication-dependent histone mRNAs requires both ATR 
and Upf1. Nat Struct Mol Biol. 2005; 12:794-800.

20. Azzalin CM, Lingner J. The human RNA surveillance 
factor UPF1 is required for S phase progression and 
genome stability. Curr Biol. 2006; 16:433-439.

21. Dahlseid JN, Lew-Smith J, Lelivelt MJ, Enomoto 
S, Ford A, Desruisseaux M, McClellan M, Lue N, 
Culbertson MR, Berman J. mRNAs encoding telomerase 
components and regulators are controlled by UPF genes 
in Saccharomyces cerevisiae. Eukaryot Cell. 2003; 
2:134-142.

22. Lew JE, Enomoto S, Berman J. Telomere length 
regulation and telomeric chromatin require the nonsense-
mediated mRNA decay pathway. Mol Cell Biol. 1998; 
18:6121-6130.

23. Ajamian L, Abrahamyan L, Milev M, Ivanov PV, 
Kulozik AE, Gehring NH, Mouland AJ. Unexpected 
roles for UPF1 in HIV-1 RNA metabol ism and 
translation. RNA. 2008; 14:914-927.

24. Leeds P, Peltz SW, Jacobson A, Culbertson MR. The 
product of the yeast UPF1 gene is required for rapid 
turnover of mRNAs containing a premature translational 
termination codon. Genes Dev. 1991; 5:2303-2314.

25. Page MF, Carr B, Anders KR, Grimson A, Anderson P. 
SMG-2 is a phosphorylated protein required for mRNA 
surveillance in Caenorhabditis elegans and related to 
Upf1p of yeast. Mol Cell Biol. 1999; 19:5943-5951.

26. Culbertson MR, Leeds PF. Looking at mRNA decay 
pathways through the window of molecular evolution. 
Curr Opin Genet Dev. 2003; 13:207-214.

27. Avery P, Vicente-Crespo M, Francis D, Nashchekina O, 
Alonso CR, Palacios IM. Drosophila Upf1 and Upf2 loss 
of function inhibits cell growth and causes animal death 
in a Upf3-independent manner. RNA. 2011; 17:624-638.

28. Wittkopp N, Huntzinger E, Weiler C, Sauliere J, Schmidt 
S, Sonawane M, Izaurralde E. Nonsense-mediated 
mRNA decay effectors are essential for zebrafish 
embryonic development and survival. Mol Cell Biol. 
2009; 29:3517-3528.

29. Medghalchi SM, Frischmeyer PA, Mendell JT, Kelly 
AG, Lawler AM, Dietz HC. Rent1, a trans-effector 
of nonsense-mediated mRNA decay, is essential for 
mammalian embryonic viability. Hum Mol Genet. 2001; 
10:99-105.

30. Riehs-Kearnan N, Gloggnitzer J, Dekrout B, Jonak C, Riha 
K. Aberrant growth and lethality of Arabidopsis deficient 
in nonsense-mediated RNA decay factors is caused by 
autoimmune-like response. Nucleic Acids Res. In press.

31. Hwang J, Maquat LE. Nonsense-mediated mRNA decay 
(NMD) in animal embryogenesis: To die or not to die, 
that is the question. Curr Opin Genet Dev. 2011; 21:422-
430.

32. Schoenberg DR, Maquat LE. Regulation of cytoplasmic 
mRNA decay. Nat Rev Genet. 2012; 13:246-259.

33. Tani H, Mizutani R, Salam KA, Tano K, Ijiri K, 
Wakamatsu A, Isogai T, Suzuki Y, Akimitsu N. Genome-
wide determination of RNA stability reveals hundreds of 

short-lived noncoding transcripts in mammals. Genome 
Res. 2012; 22:947-956.

34. Keene JD. Mini review: Global regulation and dynamics 
of ribonucleic acid. Endocrinology. 2010; 151:1391-1397.

35. Akimitsu N. Messenger RNA surveillance systems 
monitoring proper translation termination. J Biochem. 
2008; 143:1-8.

36. Lewis BP, Green RE, Brenner SE. Evidence for 
the widespread coupling of alternative splicing and 
nonsense-mediated mRNA decay in humans. Proc Natl 
Acad Sci U S A. 2003; 7:189-192.

37. Holbrook JA, Neu-Yilik G, Hentze MW, Kulozik AE. 
Nonsense-mediated decay approaches the clinic. Nat 
Genet. 2004; 36:801-808.

38. Bhuvanagiri M, Schlitter AM, Hentze MW, Kulozik AE. 
NMD: RNA biology meets human genetic medicine. 
Biochem J. 2010; 430:365-377.

39. Lelivelt MJ, Culbertson MR. Yeast Upf proteins required 
for RNA surveillance affect global expression of the 
yeast transcriptome. Mol Cell Biol. 1999; 19:6710-6719.

40. He F, Li X, Spatrick P, Casillo R, Dong S, Jacobson 
A. Genome-wide analysis of mRNAs regulated by the 
nonsense-mediated and 5' to 3' mRNA decay pathways 
in yeast. Mol Cell. 2003; 12:1439-1452.

41. Guan Q, Zheng W, Tang S, Liu X, Zinkel RA, Tsui 
KW, Yandell BS, Culbertson MR. Impact of nonsense-
mediated mRNA decay on the global expression profile 
of budding yeast. PLoS Genet. 2006; 2:e203.

42. Ramani AK, Nelson AC, Kapranov P, Bell I, Gingeras 
TR, Fraser AG. High resolution transcriptome maps 
for wild-type and nonsense-mediated decay-defective 
Caenorhabditis elegans. Genome Biol. 2009; 10:R101.

43. Rehwinkel J, Letunic I, Raes J, Bork P, Izaurralde E. 
Nonsense-mediated mRNA decay factors act in concert 
to regulate common mRNA targets. RNA. 2005; 
11:1530-1544.

44. Hori K, Watanabe Y. UPF3 suppresses aberrant spliced 
mRNA in Arabidopsis. Plant J. 2005; 43:530-540.

45. Yoine M, Nishii T, Nakamura K. Arabidopsis UPF1 
RNA helicase for nonsense-mediated mRNA decay is 
involved in seed size control and is essential for growth. 
Plant Cell Physiol. 2006; 47:572-580.

46. Kurihara Y, Matsui A, Hanada K, Kawashima M, Ishida 
J, Morosawa T, Tanaka M, Kaminuma E, Mochizuki 
Y, Matsushima A, Toyoda T, Shinozaki K, Seki M. 
Genome-wide suppression of aberrant mRNA-like 
noncoding RNAs by NMD in Arabidopsis. Proc Natl 
Acad Sci U S A. 2009; 106:2453-2458.

47. Wittmann J, Hol EM, Jack HM. hUPF2 silencing 
identifies physiologic substrates of mammalian 
nonsense-mediated mRNA decay. Mol Cell Biol. 2006; 
26:1272-1287.

48. Rebbapragada I, Lykke-Andersen J. Execution of 
nonsense-mediated mRNA decay: What defines a 
substrate? Curr Opin Cell Biol. 2009; 21:394-402.

49. Perlick HA, Medghalchi SM, Spencer FA, Kendzior 
RJ Jr, Dietz HC. Mammalian orthologues of a yeast 
regulator of nonsense transcript stability. Proc Natl Acad 
Sci U S A. 1996; 93:10928-10932.

50. Ishigaki Y, Li X, Serin G, Maquat LE. Evidence for a 
pioneer round of mRNA translation: mRNAs subject to 
nonsense-mediated decay in mammalian cells are bound 
by CBP80 and CBP20. Cell. 2001; 106:607-617.

51. Kashima I, Yamashita A, Izumi N, Kataoka N, Morishita 
R, Hoshino S, Ohno M, Dreyfuss G, Ohno S. Binding of 



www.ddtjournal.com

Drug Discoveries & Therapeutics. 2012; 6(2):55-61. 61

a novel SMG-1-Upf1-eRF1-eRF3 complex (SURF) to 
the exon junction complex triggers Upf1 phosphorylation 
and nonsense-mediated mRNA decay. Genes Dev. 2006; 
20:355-367.

52. Le Hir H, Izaurralde E, Maquat LE, Moore MJ. The 
spliceosome deposits multiple proteins 20-24 nucleotides 
upstream of mRNA exon-exon junctions. EMBO J. 
2000; 19:6860-6869.

53. Cho H, Kim KM, Kim YK. Human proline-rich nuclear 
receptor coregulatory protein 2 mediates an interaction 
between mRNA surveillance machinery and decapping 
complex. Mol Cell. 2009; 33:75-86.

54. Isken O, Kim YK, Hosoda N, Mayeur GL, Hershey JW, 
Maquat LE. Upf1 phosphorylation triggers translational 
repression during nonsense-mediated mRNA decay. Cell. 
2008; 133:314-327.

55. Eberle AB, Lykke-Andersen S, Muhlemann O, Jensen 
TH. SMG6 promotes endonucleolytic cleavage of 
nonsense mRNA in human cells. Nat Struct Mol Biol. 
2009; 16:49-55.

56. Huntzinger E, Kashima I, Fauser M, Sauliere J, 
Izaurralde E. SMG6 is the catalytic endonuclease 
that cleaves mRNAs containing nonsense codons in 
metazoan. RNA. 2008; 14:2609-2617.

57. Unterholzner L, Izaurralde E. SMG7 acts as a molecular 
link between mRNA surveillance and mRNA decay. Mol 
Cell. 2004; 16:587-596.

58. Okada-Katsuhata Y, Yamashita A, Kutsuzawa K, 
Izumi N, Hirahara F, Ohno S. N- and C-terminal Upf1 
phosphorylations create binding platforms for SMG-6 
and SMG-5:SMG-7 during NMD. Nucleic Acids Res. 
2012; 40:1251-1266.

59. Muhlemann O, Lykke-Andersen J. How and where are 
nonsense mRNAs degraded in mammalian cells? RNA 
Biol. 2010; 7:28-32.

60. Franks TM, Singh G, Lykke-Andersen J. Upf1 ATPase-
dependent mRNP disassembly is required for completion 
of nonsense-mediated mRNA decay. Cell. 2010; 
143:938-950.

61. Roegiers F, Jan YN. Staufen: A common component of 
mRNA transport in oocytes and neurons? Trends Cell 
Biol. 2000; 10:220-224.

62. Furic L, Maher-Laporte M, DesGroseillers L. A genome-
wide approach identifies distinct but overlapping subsets 
of cellular mRNAs associated with Staufen1- and 
Staufen2-containing ribonucleoprotein complexes. RNA. 
2008; 14:324-335.

63. Gong C, Maquat LE. lncRNAs transactivate Staufen1-
mediated mRNA decay by duplexing with 3′ UTRs via 
Alu elements. Nature. 2011; 470:284-288.

64. Gong C, Kim YK, Woeller CF, Tang Y, Maquat LE. 
SMD and NMD are competitive pathways that contribute 

to myogenesis: Effects on PAX3 and myogenin mRNAs. 
Genes Dev. 2009; 23:54-66.

65. Marzluff WF. Metazoan replication-dependent histone 
mRNAs: A unique set of RNA polymerase II transcripts. 
Curr Opin Cell Biol. 2005; 17:274-280.

66. Marzluff WF, Wagner EJ, Duronio RJ. Metabolism and 
regulation of canonical histone mRNAs: Life without a 
poly (A) tail. Nat Rev Genet. 2008; 9:843-854.

67. Muller B, Blackburn J, Feijoo C, Zhao X, Smythe C. 
DNA-activated protein kinase functions in a newly 
observed S phase checkpoint that links histone mRNA 
abundance with DNA replication. J Cell Biol. 2007; 
179:1385-1398.

68. Branzei D, Foiani M. Regulation of DNA repair 
throughout the cell cycle. Nat Rev Mol Cell Biol. 2008; 
9:297-308.

69. Azzalin CM, Lingner J. The double life of UPF1 in RNA 
and DNA stability pathways. Cell Cycle. 2006; 5:1496-
1498.

70. Branzei D, Foiani M. Maintaining genome stability at 
the replication fork. Nature Rev Mol Cell Biol. 2010; 
11:208-219.

71. O' Sullivan RJ, Karlseder J. Telomeres: Protecting 
chromosomes against genome instability. Nat Rev Mol 
Cell Biol. 2010; 11:171-181.

72. Schoeftner S, Blasco MA. Developmentally regulated 
transcription of mammalian telomeres by DNA-
dependent RNA polymerase II. Nat Cell Biol. 2008; 
10:228-236.

73. Azzalin CM, Reichenbach P, Khoriauli L, Giulotto E, 
Lingner J. Telomeric repeat containing RNA and RNA 
surveillance factors at mammalian chromosome ends. 
Science. 2007; 318:798-801.

74. Luke B, Lingner J. TERRA: Telomeric repeat-containing 
RNA. EMBO J. 2009; 28:2503-2510. 

75. Gaglia MM, Glaunsinger BA. Viruses and the cellular 
RNA decay machinery. Wiley Interdiscip Rev RNA 
2010; 1:47-59.

76. M o u l a n d A J , M e r c i e r J ,  L u o M , B e r n i e r L , 
DesGroseillers L, Cohen EA. The double-stranded 
RNA-binding protein staufen is incorporated in human 
immunodeficiency virus type1: Evidence for a role in 
genomic RNA encapsidation. J Virol. 2000; 74:5441-
5451.

77. Chatel-Chaix L, Clement JF, Martel C, Beriault V, 
Gatignol A, DesGroseillers L, Mouland AJ. Identification 
of Staufen in the human immunodeficiency virus type 1 
Gag ribonucleoprotein complex and a role in generating 
infectious viral particles. Mol Cell Biol. 2004; 24:2637-
2648.

 (Received April 3, 2012; Accepted April 21, 2012)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


