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c-Met: A potential therapeutic target for hepatocellular carcinoma

Jianjun Gao1,2, Yoshinori Inagaki1, Xia Xue2, Xianjun Qu2, Wei Tang1,2,*

1 Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan;
2 School of Pharmaceutical Sciences, Shandong University, Ji'nan, China.

*Address correspondence to:
Dr. Wei Tang, Hepato-Biliary-Pancreatic Surgery 
Division, Department of Surgery, Graduate School 
of Medicine, The University of Tokyo, 7-3-1 Hongo, 
Bunkyo-ku, Tokyo 113-8655, Japan.
e-mail: TANG-SUR@h.u-tokyo.ac.jp

ABSTRACT: The approval of receptor tyrosine 
kinase (RTK) targeted agent sorafenib as the first 
effective drug for the systemic treatment of advanced 
hepatocellular carcinoma (HCC) represents a 
milestone in the treatment of this disease. A better 
understanding of HCC pathogenesis will lead to 
development of novel targeted treatments. As a 
typical member of the RTK family, c-Met represents 
an intriguing target for cancer therapy. The c-Met 
signaling pathway has been shown to be deregulated 
and to correlate with poor prognosis in a number 
of major human cancers. This review discusses the 
possibility of c-Met as a target in HCC treatment 
from the following respects: i) c-Met expression and 
activation profile in HCC, ii) relationship between 
c-Met and clinicopathologic state and prognosis of 
HCC, iii) role of c-Met signaling activity in HCC 
genesis and progression, and iv) strategy of c-Met 
pathway targeting therapy in HCC treatment.
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1. Introduction

Liver cancer ranked fifth in incidence and third in 
mortality in global cancer burden in 2008 according to 
the statistics published by World Health Organization 
(1). Among the diverse, histologically distinct primary 
hepatic neoplasms, hepatocellular carcinoma (HCC) is 
the most common type of liver cancer, accounting for 
83% of all cases (2). Therapeutic approaches including 
hepatic resection, liver transplantation, and loco-regional 
therapies play a major role in the clinical management 
of HCC (3). In recent years, introduction of molecular 

targeted therapies has opened new prospects in treatment 
of HCC. Systemic treatment with sorafenib, a multikinase 
inhibitor targeting Raf kinase and receptor tyrosine 
kinases (RTKs) including platelet-derived growth factor 
receptor (PDGFR), vascular endothelial growth factor 
(VEGF) receptor (VEGFR) and c-kit (receptor specific 
for stem cell factor), is recommended for patients at a 
more advanced stage of HCC (4). In addition, several 
other RTKs targeted drugs such as evacizumab, erlotinib, 
gefitinib, lapatinib, cetuximab, sunitinib, and brivanib 
have entered into clinical trials for treatment of advanced 
HCC (5). These studies illustrate the utility of targeting 
the protein class RTKs in HCC management.
 c-Met is a prototypic member of RTKs. The ligand 
for c-Met is a growth factor known as hepatocyte growth 
factor (HGF) (6). c-Met signaling pathway is involved 
in diverse cellular responses such as mitogenesis, 
motogenesis, or morphogenesis depending on the 
particular cell type and the microenvironment (7,8). In 
circumstances of tissue removal or damage such as liver 
regeneration or renal and lung injury, c-Met expression 
is induced as an important mediator in the wound 
healing and tissue repair processes (9-11). Deregulation 
and activation of c-Met may result in unregulated cell 
growth and differentiation, contributing to malignant 
transformation (12). c-Met overexpression or enhanced 
activation relative to normal tissues is demonstrated 
in several human cancers including gastric, colorectal, 
pancreatic, lung, head and neck, ovarian, renal, glioma,  
melanoma, prostatic and breast carcinoma (13-15). This 
review provides a systematic retrospective about the 
role of c-Met in HCC pathogenesis and discusses the 
possibility of molecular targeting of c-Met as a potential 
therapeutic strategy for HCC.

2. c-Met expression and activation profi le in HCC

2.1. c-Met expression

c-Met expression in human HCC and non-HCC liver 
tissues was examined in a number of studies in the past 
twenty years. c-Met positive rates and expression levels 
in HCCs are usually higher than those in normal or 
adjacent non-tumorous liver tissue either at the mRNA 
or protein level (Tables 1 and 2) (16-30). These studies 
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suggested that c-Met expression, at least in part, was 
deregulated in the genesis and progression of HCC.

2.2. Mechanisms underlying aberrant c-Met expression 
in HCC

Mechanisms involved in c-Met aberrant expression are 
commonly found in the following repects.
 Inducible endogenous or exogenous factors  c-Met 

gene expression is inducible by its own ligand HGF 
(31). Besides HGF, other cytokines including epidermal 
growth factor (EGF), interleukin (IL)-1, IL-6, and tumor 
necrosis factor-α can induce c-Met expression in HCC 
cells in vitro (31). In HepG2 cells, c-Met gene promoter 
activity was up-regulated when treated with HGF, IL-1, 
and IL-6. The activator protein (AP)-1 was considered 
to participate in HGF and IL-6-induced c-Met gene 
transcription (31,32). In addition to the above endogenous 
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Table 1. c-Met positive rates in human HCC and non-HCC liver tissues in various studies

Authors

Annen (16)
Xie et al. (17)
Wu et al. (18)

Ueki et al. (19)
Ljubimova et al. (22)

Chau et al. (20)
Kiss et al. (21)
D'Errico et al. (26)

 Level

protein
protein
protein
mRNA
protein
protein
mRNA
protein
protein
protein

Sample tested (n)

18
47
25
25
62
 6
12
40
86
20

 HCC tissues

 Positive (n)

12
18
21
25
40
 6
10
35
83
20

 Positive rate (%)

         66.7
         38.3
         84.0
       100.0
         64.5
       100.0
         83.3
         87.5
         96.5
       100.0

 Sample tested (n)

18a

25b

25c

25c

62d

  9e

30f

40g

86h

10i

Non-HCC tissues

     Positive (n)

  8
  3
  5
  6
  4
  9
13
34
86
10

Positive rate (%)

        44.4
        12.0
        20.0
        24.0
          6.4
      100.0
        43.3
        85.0
      100.0
      100.0

a adjacent non-cancerous tissues; b adjacent non-cancerous tissues; c adjacent non-cancerous tissues; d adjacent non-cancerous tissues; e 3 normal, 
3 HCV, and 3 alcoholic liver disease (ALD) cirrhotic specimens; f 7 normal, 9 HCV cirrhosis, 8 ALD, 4 ALD/HCV, 2 liver adenoma specimens; 
g adjacent non-cancerous tissues; h adjacent non-cancerous tissues; i 5 focal nodularhyperplasias, 4 fulminant hepatitis, 1 regenerated liver.

Table 2. Expression levels of c-Met in human HCC and non-HCC liver tissues

Authors

Ueki et al. (19)

Kiss et al. (21)

Ljubimova et al. (22)

Osada et al. (23)

Suzuki et al. (24)

Zhang et al. (25)

D'Errico et al. (26)

Osada et al. (27)

Boix et al. (28)

Noguchi et al. (29)

Okano et al. (30)

 Level

protein

protein

protein

protein

protein

mRNA

protein

protein

protein

mRNA

mRNA

protein

c-Met expression

The mean expression level of c-Met was significantly higher in HCC tissues than 
in non-tumorous tissue.

Overexpression in 20% of 86 HCC specimens when compared to the surrounding 
hepatic tissue.

In normal liver the staining intensity was usually weaker compared with HCC and 
some areas of cirrhotic livers.

Expression at higher levels in 19 of 30 HCCs compared with non-tumorous tissue.

Detection in 16 of 23 patients (69.6%), overexpression in HCC compared with the 
surrounding normal liver.

c-Met mRNA was detected in 6 of 19 HCCs (31.6%); c-Met mRNA was 
overexpressed in HCC compared with the surrounding normal liver.

9 of the 20 HCCs exhibited c-Met overexpression, with an increase ranging 
between 2- and 7-fold when compared by densitometry with the surrounding non-
tumor liver.

The c-Met protooncogene product was expressed in all cases (20 HCCs, 5 focal 
nodularhyperplasias, 4 fulminant hepatitis, 1 regenerated liver), with marked 
overexpression in the HCCs.

The mean value of c-Met in tumor tissue, 1.36 ± 0.12*, was clearly higher than 
in non-tumor tissue, 1.07 ± 0.06*. Data was obtained from specimens of 30 HCC 
patients.

c-Met overexpressed in 8 of 18 HCCs, with an increase ranging between 2- and 
10-fold when compared by densitometry with the surrounding liver.

Overall level of c-Met mRNA was significantly higher in HCC tissues than that in 
non-HCC surrounding regions (0.41 ± 0.20 vs. 0.08 ± 0.02 pg/μg total RNA) in 11 
HCC specimens.

The expression of c-Met protein was higher in patients with HCC and acute 
hepatitis than in those with chronic hepatitis.

Method of detection

Western blot

Immunohistochemistry

Immunohistochemistry

Western blot

Immunohistochemistry

Northern blot

Immunohistochemistry

Immunohistochemistry

Western blot

Northern blot

Competitive RT-PCR

Immunohistochemistry

* The expression level of c-Met was presented as the optical density (OD) ratio of c-Met/β-actin.
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scenario exists. In addition to paracrine activation, 
intracytoplasmic positivity for HGF was also evident in a 
large number of neoplastic cells in some cases of HCCs, 
which supported that an autocrine pattern of action of 
HGF also existed in HCC (19,26). Thus, c-Met can be 
activated in both autocrine and paracrine patterns in HCC.

2.3.2. HGF-independent activation

In addition to the HGF-dependent pattern, c-Met 
activation can occur through alternative mechanisms in 
HCCs including: i) active mutants of c-Met constitutively 
phosphorylating the downstream kinases; ii) activation 
by cell attachment; iii) transactivation by EGF receptor 
(EGFR); and iv) activation by des-γ-carboxy prothrombin 
(DCP).
 Mutations that either promote receptor dimerization/
oligomerization or alter catalytic activity or substrate 
specifi city, would possibly activate RTKs. Constitutive 
activating mutations of c-Met may play an important 
role in the development of HCC by conferring cells a 
selective growth advantage. In HCC, three missense 
mutations K1262R, M1268I, and T1191I in the 
tyrosine kinase domain were exclusively detected in 
childhood HCCs (Table 3) (44). Missense mutations 
K1262R and M1268I in the kinase domain of c-Met 
are located in a specific region which is believed to 
act as an intramolecular substrate that, in the absence 
of ligand, functions to inhibit enzymatic activity by 
blocking the active site (44). It is speculated that these 
mutations stimulate the kinase activity of c-Met by 
altering the structure of the intramolecular substrate 
such that it is constitutively disengaged from the active 
site (44).
 A mechanism of activation of c-Met that did 
not rely on mutation but depended on cell adhesion 
was demonstrated by Wang et al. (45). In their 
study, overexpression of the human wild-type c-Met 
which could not respond to murine HGF but was 
enzymatically active in mice hepatocytes allowed 
activation of the receptor (46,47). The activation of 
c-Met in this case was considered to be dependent on 
cell adherence, but not HGF (45). Furthermore, this 
style of activation might depend on overexpression of 
c-Met (45). These results indicate that cell adherence 
may be an alternative activation mechanism for tumor 
development in cancers related to hyperactivation or 
overexpression of wild-type tyrosine kinase receptors.
 Cross-talk can occur between different growth factor 
receptors, which may induce mitogenic or motogenic 

factors, hepatitis B virus X protein (HBX) which acted as 
a weak to moderately strong transcriptional transactivator 
was proven to be an exogenous inducible factor for c-Met 
expression (33). Activation of transcription factors AP-2 
and specificity protein (SP)-1 at the promoter region of 
the c-Met gene contributed to transcriptional regulation 
of c-Met expression by HBX (33).
 MicroRNAs (miRNAs)  miRNAs are small RNA 
molecules which are approximately 22 nucleotides long 
and negatively control their target genes expression 
posttranscriptionally (34). miRNAs including miR-34a, 
miR-23b and miR-199a-3p targeting c-Met are dysregulated 
in HCC tissues (35). Li et al. demonstrated that down-
regulation of miR-34a expression was highly significant 
in 19 of 25 (76%) HCC tissues compared with adjacent 
normal tissues and an inverse correlation between miR-34a 
and c-Met expression was observed in resected normal/
tumor tissues (36). miR-23b was found down-regulated 
in 82% (14/17) HCC tissues compared with adjacent non-
HCC tissues as indicated by Salvi et al. (37). Similarly, a 
signifi cant down-regulation of miR-199a-3p expression was 
observed in HCC tissues (38). Thus, overexpression of c-Met 
may be partially ascribed to down-regulaton of miRNAs 
targeting c-Met in HCC.
 Amplifi ed maturation process  During the maturation 
of c-Met, the primary single chain precursor protein 
(p170met) is cleaved to produce the α subunit (p50met) and 
β subunit (p140met) which are disulfi de linked to form the 
mature receptor (6). This process is probably amplified 
in carcinogenesis of the liver. Annen et al. showed that 
expression of p170met precursor was signifi cantly higher 
in non-cancerous regions than in cancerous regions, while 
the p140met signal was obviously stronger in cancerous 
regions than in non-cancerous regions. These results 
imply that the processing pathway from the pro-receptor 
to the mature receptor is possibly facilitated in HCC (16).

2.3. c-Met activation

The classical mode of  c-Met activation requires the 
binding of  HGF to c-Met. In addition to this HGF-
dependent form, an HGF-independent pattern of c-Met 
activation, especially found in tumor development, has 
also been reported.

2.3.1. HGF-dependent activation

Under physiological conditions, c-Met expression is mainly 
observed in the epithelial compartment of various tissues, 
while its ligand HGF is expressed in cells of mesenchymal 
origin (39,40). Accordingly, HGF and c-Met constitute 
a paracrine signaling system which plays a critical 
role in development and organogenesis (40). In normal 
human liver, HGF was detected in bile duct epithelia 
and in endothelial cells of both the central-lobular vein 
and portal tract vessels whereas c-Met was identified in 
mature hepatocytes (41-43). In HCC, a somewhat different 

Table 3. c-Met mutations detected in HCC

Exon

17
19
19

Codon

 1191
 1268
 1262

  Nucletide

ACT → ATT
ATG → ATA
AAG → AGG

Amino acid

 Thr → Ile
 Met → Ile
 Lys → Arg
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signal amplification. EGFR exists on the cell surface 
and is activated by binding of its specific ligands 
including EGF and transforming growth factor α (TGFα) 
(48). It has been shown that cross-talk between c-Met 
and EGFR occur in HCC. HCC cell lines expressing 
TGFα in an autocrine manner displayed constitutive 
phosphorylation of EGFR and c-Met in the absence of 
HGF (49). The association between these two receptors 
was demonstrated to happen either directly, or via 
adapter molecules, before or during tumorigenesis, and 
might enable TGFα or EGF to phosphorylate c-Met 
through EGFR (49).
 DCP is employed as a tumor marker in the clinic for 
its high sensitivity and specifi city in the screening and 
diagnosis of HCC (50-52). Two kringle domains in the 
structure of DCP are similar to those of HGF which are 
considered to be mandatory for HGF to bind to c-Met 
(53). Based on this similarity, DCP binds and induces 
the phosphorylation of c-Met (54). However, the 
manner of activation of c-Met by DCP is different from 
that by HGF. Tyrosines-1234 and -1235 in the tyrosine 
kinase domain and tyrosines-1349 and -1356 in the 
multifunctional docking site were phosphorylated when 
c-Met was activated by HGF (55-57). However, when 
binding DCP to c-Met phosphorylation occurred in 
those tyrosine residues located in the kinase activation 
loop (Tyr1234/1235) but not in the C-terminal tail 
(Tyr1349) (54).

3. c-Met as an indicator for clinicopathologic state 
and prognosis of HCC

3.1. c-Met and clinicopathologic characteristics of HCC

The relationship between c-Met protein expression 
in HCC tissues and clinicopathologic characteristics 
is indicated in Table 4. Generally, tumor proliferative 
index was high in HCCs with c-Met expression 
(24,26). In addition, HCCs with multiple nodular 
tumors showed higher c-Met expression (58). On the 
other hand, no relevance was observed between c-Met 
expression and serum alpha fetoprotein (AFP) level, 
sex, or age (17,19,30,58). Conflicting results were 
reported regarding characteristics such as tumor size, 
differentiation degree, stage, invasion, and metastasis 
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(17,19,24,26,27,30,58). However, characteristics like 
tumor invasion and metastasis, and differentiation 
degree were more frequently reported to be correlated 
with c-Met expression. In those studies, level of c-Met 
expression was significantly higher in invasive or 
poorly differentiated HCCs. With respect to tumor 
size, most studies suggested it was unrelated to 
c-Met expression. When referring to tumor stage, 
contradictory results were obtained by Ke et al. and 
Xie et al. (17,58). The former study demonstrated that 
c-Met expression was obviously higher in advanced 
HCCs (TNM stage III or IV), whereas the latter one 
indicated that no difference of c-Met expression 
existed in early and advanced stages of HCCs. The 
sample size which is 520 in the former study and 
20 in the latter study may influence the consistency 
of results. Taken together, the expression of c-Met 
in HCC may be important to evaluate the status of 
this disease, especially to caution for tumor cells 
actively proliferating and the presence of intrahepatic 
metastasis or multiple nodular tumors.

3.2. c-Met and prognosis of HCC

Currently much work is underway to determine 
molecular predictors of the outcome of HCC (59). 
Expression of c-Met in HCC tissue was considered to 
be one of the independent prognostic factors indicating 
metastasis and recurrence in patients with HCC (60). 
Patients with high c-Met expression HCC usually had 
a significantly shorter 5-year survival than patients 
with low c-Met expression HCC after curative surgical 
resections (19). In addition, the sustained high level 
of serum HGF after hepatectomy was suggested to 
be related to early tumor recurrence and metastasis 
(18). Using transcriptome analysis, a group of HCCs 
(27%) with potentially activated c-Met signaling were 
classified based on a c-Met induced transcription 
signature (61). These tumors were characterized by 
higher vascular invasion rate, increased microvessel 
density, and shortened survival. Moreover, a predictive 
model was established according to c-Met gene 
signatures, which was able to diversify HCC patients 
into good and bad prognostic groups with 83-95% 
accuracy (61). These results suggest that expression and 

Table 4. The relationship between c-Met protein expression and clinicopathologic characteristics of HCC

Studies

Xie et al. (17) 
Ueki et al. (19) 
Suzuki et al. (24) 
D'Errico et al. (26)
Osada et al. (27) 
Okano et al. (30)
Ke et al. (58)

ND: not determined; NS: not signifi cant; +: positive; --: negative.

 No. of cases

  47
  62
  23
  50
  30
  26
520

 Tumor size

--
--

ND
ND
ND
--
+

Proliferation 
   activity

ND
ND
NS
+

ND
ND
ND

Differentiation
      degree

+
--
+
+

ND
--
+

Tumor
 stage

--
ND
ND
ND
ND
ND
+

Invasion and
 metastasis

+
+

ND
ND
+
--
+

Sex 

 --
 --
ND
ND
ND
ND
 --

Age

 --
 --
ND
ND
ND
ND
 --

 Serum AFP
      level

ND
ND
ND
ND
ND
--
--
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activation of c-Met in HCC tissues indicate an adverse 
prognosis for HCC patients.

4. c-Met signaling in HCC tumorigenesis and 
progression

Signal transduction is the communication process 
utilized by regulatory cytokines to mediate essential 
cell processes (including growth, differentiation, and 
survival) in response to stimuli. Enhanced signal 
transduction may lead to increased cell proliferation, 
sustained angiogenesis, tissue invasion and metastases, 
and inhibition of apoptosis during tumor development 
and progression. On the other hand, blocking tumor-
dependent signal transduction pathways might slow 
down tumor progression.

4.1. c-Met signaling in HCC

The c-Met protein is fi rst synthesized in the hepatocytes 
as a single chain precursor (p170met), and then processed 
to a mature glycosylated heterodimer receptor (p190met) 
which consists of an extracellular α subunit (p50met) 
and a transmembrane β subunit (p140met) (6,62). The 
β subunit has a protein kinase domain and a docking 
site for cell-signaling molecules (55,63). c-Met signal 
transduction involved in HCC is illustrated in Figure 
1. When activated by HGF, the intracellular tyrosine 
kinase domain of c-Met is highly phosphorylated at 
two tyrosine residues (Tyr-1234 and Tyr-1235) that 
are essential for the catalytic activity of the enzyme 
(64,65). Phosphorylation also occurrs at two tyrosine 
residues (Tyr-1349 and Tyr-1356) located in the 

Figure 1. Schematic representation of the c-Met signaling pathway suggested in HCC cells. The activation of c-Met in HGF-
dependent and/or HGF-independent ways induces phosphorylation of specifi c tyrosine residues within the c-Met intracellular 
domain and, in turn, initiates activation of the downstream signaling cascades.
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carboxyl-terminal region of the β-subunit which acts 
as a multifunctional docking site and binds numerous 
srchomology 2 (SH2) domain-containing effectors 
such as the growth factor receptor-bound protein 2 
(Grb2) and transcription factor STAT3 (55,66,67). Upon 
phosphorylation, this docking motif can also associate 
with Grb2-associated binding protein 1 (Gab-1), a multi-
adaptor protein that provides binding sites for molecules 
such as phosphatidylinositol 3 kinase (PI3K) and 
phospholipase Cγ1 (PLCγ1) (68). It was suggested that 
Gab-1 interacted with the c-Met multifunctional docking 
site both directly and indirectly (68). On one side, Gab1 
might interact directly with tyrosine-1349 of c-Met. 
On the other side, Gab1 indirectly associated with 
c-Met, in which Grb2 acted as an adapter by binding 
tyrosine-1356 of c-Met with the SH2 domain and the 
proline rich sequences of Gab1 with the srchomology 
3 (SH3) domain (68). Downstream of adaptors the 
regulation of cell proliferation, invasion and metastasis 
by c-Met was related with extracellular signal-regulated 
protein kinase (ERK) and PI3K pathways. In addition, 
Suzuki et al. demonstrated DCP induced the JAK1-
STAT3 signaling pathway, while it did not affect the 
ERK or PI3K pathway (54).

4.2. Role of c-Met signaling in hepatocarcinogenesis

As the natural ligand of c-Met, HGF is a potent 
mitogen for hepatocytes and various epithelial cells and 
activation of the ERK pathway plays an important role 
in the regulation of cell proliferation by HGF (69). That 
c-Met signaling is involved in hepatocarcinogenesis 
is evidenced by the fact that c-Met transgenic mice 
would develop HCC (45). In these mice, inactivation 
of the transgene led to regression of even highly 
advanced tumors, apparently mediated by apoptosis 
and cessation of cellular proliferation (45). HCC could 
also be initiated by hydrodynamic transfection of c-Met 
in combination with constitutively active versions of 
β-catenin into the livers of adult mice (70). Inactivation 
of c-Met transgene led to regression of hepatocellular 
carcinomas despite the persistence of activated 
β-catenin. The tumors eventually recurred in the 
absence of c-Met expression, however, presumably after 
the occurrence of one or more events that cooperated 
with activated β-catenin in lieu of c-Met (70). These 
studies implied that enhanced c-Met signal transduction 
played a critical role in the malignant transformation of 
normal hepatocytes.

4.3. Role of c-Met signaling in HCC invasion and 
metastasis

Tumor metastasis is a continuous dynamic process 
involving releasing of tumor cells, their migrating and 
crossing the blood vessel barriers, and colonizing at 
distant sites. The motility of HCC cell lines (Hep3B, 

HepG2, PLC, and Huh-7) and HCC cells harvested 
from patients was stimulated by HGF (71). Tyrosine 
phosphorylation of c-Met and activation of PI3K were 
regarded to play a critical role in these processes (71). 
Neaud et al. showed that addition of human liver 
myofi broblasts (MF) conditioned medium induced cell 
scattering and increased about 100-fold the ability of 
HepG2 to invade Matrigel, and that the HGF secreted 
by MF played a critical role in these processes (72). Up-
regulating of urokinase type plasminogen activator (uPA) 
induced by c-Met signaling was thought to contribute 
to the invasion and metastasis of HCC cells (73). 
Angiogenesis is the physiological process involving the 
growth of new blood vessels from pre-existing vessels, 
which is a fundamental step in the transition of tumors 
from a dormant state to a malignant one. Enhanced 
angiogenesis was observed in HCCs developed in HGF 
transgenic mice in which expression of VEGF was up-
regulated in parallel with HGF transgene expression 
(74). Moreover, HGF as well as inducible nitric oxide 
synthase are involved in multidrug resistance (MDR) 
induced angiogenesis in HCC cell lines (75). Thus, 
HGF/c-Met signaling is possibly implicated in HCC 
metastasis through promoting cell motility, stimulating 
protease production that facilitates cellular invasion 
and strengthening angiogenesis which helps HCC cells 
colonize in other organs.

5. The strategy of c-Met signaling targeting therapy 
for HCC treatment

Based on the current understanding of the c-Met pathway 
in HCC, several strategies to intervene in the pathway 
could be proposed at different levels: i) inhibition of 
HGF expression or activity; ii) inhibition of c-Met 
expression or kinase activity; and iii) interference with 
downstream effector functions.
 Even though HGF is  a  potent  mitogen for 
hepatocytes, the effect of HGF on the growth of HCC 
cells is controversial. In addition to stimulating HCC cells 
proliferation, HGF also exhibits anti-proliferative effects 
on HCC cells (76). Besides that, both HCC stimulatory 
and inhibitory effects of exogenous administration of HGF 
on carcinogen-treated rats have been reported (77-79). 
There are also confl icting reports in HGF transgenic mice. 
Mice harboring a full-length mouse HGF cDNA under 
the control of the mouse metallothionein gene promoter 
induced liver tumors, which arose spontaneously in six 
independent transgenic lines after 17 months (80). In 
contrast, overexpression of a human HGF cDNA under 
the regulation of the albumin promoter in transgenic mice 
did not induce HCC (81). Moreover, the HGF transgene 
appeared to inhibit hepatocarcinogenesis in bitransgenic 
mice overexpressing c-Myc or TGF-α (82). In addition, 
D'Errico et al. reported that liver HGF did not always 
correlate with hepatocellular proliferation in human HCC, 
while its specific receptor c-Met did (26). Therefore, 
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whether or how HGF participates in hepatocarcinogenesis 
remains to be clarified. Subsequently the feasibility of 
HGF targeting therapies for HCC treatment needs to be 
futher studied.
 The antitumor effects of reducing and/or silencing of 
c-Met expression in HCC cells using antisense or RNAi 
sequences targeting c-Met mRNA have been examined in 
various studies (25,36-38,83,84). These studies showed 
that down-regulation of c-Met signifi cantly decreased the 
proliferation, motility, and invasive ability of HCC cells 
both in vitro and in vivo. The effi cacy of inhibition of c-Met 
in HCC treatments is verified. So far, many approaches 
including biologic inhibitors (ribozymes, dominant-
negative receptors, decoy receptors, peptides, and 
c-Met antagonist antibodies) and small-molecule c-Met 
inhibitors have been designed to inhibit c-Met expression 
or activity. Recently, small-molecule kinase inhibitors  
emerged as a major approach being investigated in the 
clinic. Several c-Met kinase inhibitors such as ARQ197, 
SGX523, and PF2341066 are rapidly progressing through 
various stages of development, with those in clinical 
trials having already demonstrated convincing early 
evidence of clinical activity in many types of human 
cancers (85-87). Agents that may interfere with c-Met 
downstream effector functions, including the MAPK and 
PI3K pathways may serve as an option for HCC treatment. 
However, targeting these downstream effectors might not 
be c-Met pathway-specific. Taken together we suggest 
that c-Met selective targeting therapies are possibly a 
promising strategy for HCC treatment. Finally, it should 
be noted that the intact HGF/c-Met signaling pathway was 
suggested to be essential for maintaining normal redox 
homeostasis in the liver and had tumor suppressor effects 
during the early stages of nitrosodiethylamine-induced 
hepatocarcinogenesis (88). Thus, the level of c-Met 
signaling activity has a range suitable for maintaining 
normal cell activity.

6. Conclusion

The demonstrated role of c-Met in experimental 
oncogenesis, its dysregulation and correlation with 
disease prognosis, and antitumor effects by suppression 
of its activity may suggest the potential of c-Met as a 
therapeutic target in HCC. However, identification of 
the subclass of patients with c-Met signaling dependent 
HCCs is of special importance in predicting drug 
effi ciency and reducing side effects. So far, the effi cacy of 
these approaches has not nearly been verifi ed in HCC. It 
is necessary to apply these approaches to HCC treatments 
in the future.
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