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1. Introduction

The global Coronavirus Disease 2019 (COVID-19) 
pandemic, caused by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), has posed a serious threat 
to public health security worldwide. Although various 
approved COVID-19 vaccines have played a critical 
role in controlling the pandemic (1), the continuous 
emergence of SARS-CoV-2 variants, such as the recently 
identified JN.1 (BA.2.86.1.1) and KP.2 (JN.1.11.1.2), 
threatens the efficacy of current vaccines (2). Moreover, 
vaccines are primarily used to prevent COVID-19, but 
for patients already infected with the virus, effective 
treatment options are still necessary. Therefore, the 
development of specific antiviral drugs targeting SARS-
CoV-2 remains an essential measure in addressing this 
ongoing threat.
 Papain-like protease (PLpro), a viral cysteine 
protease essential for SARS-CoV-2 replication, cleaves 

polyproteins pp1a and pp1ab to generate non-structural 
proteins (nsp). In addition to processing viral proteins, 
PLpro also targets host proteins such as ubiquitin and 
interferon-stimulated gene 15 (ISG15), performing 
deubiquitinating and deISGylating activities that suppress 
the host's innate immune response (3). Consequently, 
PLpro inhibition holds promise for suppressing viral 
propagation and restoring host's immune function (4), 
making it a key target for antiviral drug development.
 Since the outbreak of the COVID-19 pandemic, 
numerous inhibitors targeting PLpro have been 
discovered through structure-based drug design, virtual 
screening, and high-throughput screening methods (5). 
These inhibitors can be categorized into non-covalent 
and covalent inhibitors based on their binding modes 
as summarized in Figure 1. GRL0617, the first non-
covalent PLpro inhibitor (6), exhibited relatively low 
activity against SARS-CoV-2 in cell-based assays, 
despite the moderate enzymatic activity (IC50~1.39 
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μM). Subsequently, Structural optimization led to more 
potent analogs such as XR8-23 (IC50~0.39 μM) (7) and 
Jun12682 (IC₅₀~106.8 ± 5.0 nM) (8), the latter showing 
strong activity against multiple variants. In addition, 
some non-GRL0617 analogs (such as chloroxine 
(9), SJB2-043 (10), HE9 (11), HBA (11) and YM155 
(12)) and several non-specific inhibitors, (including 
ebselen (13), disulfiram (14), schaftoside (15) and 
proanthocyanidi (16)) also exhibit promising antiviral 
activity. By contrast, covalent inhibitors targeting PLpro 
like LY1 (17) and peptide-based VIR250 and VIR251 
(18) have also been reported. However, most candidates 
face limitations such as insufficient antiviral activity, 
poor pharmacokinetics, or inadequate target selectivity, 
preventing clinical translation. So far, only HL-21 has 
entered Phase I trials, and there are currently no FDA-
approved drugs targeting PLpro. These challenges 
underscore the need for improved screening strategies 
and novel chemical scaffolds to accelerate PLpro-
targeted drug discovery.
 In recent years, artificial intelligence (AI) has become 
an increasingly powerful tool in drug discovery (19). 
Notably, the 2024 Nobel Prizes in Physics and Chemistry 
has underscored the pivotal role of AI in advancing 
scientific research. Recently, some potent SARS-CoV-2 
Mpro inhibitors with strong cellular activity were 
discovered by a using machine learning approach (20), 
shortly thereafter, a lead compound (PF-07957472) 
targeting SARS-CoV-2 PLpro that showed high 
efficacy in mouse models was also identified by using 
AI technique (21). For the purpose of improving the 
drug screening efficiency and providing more candidate 
compounds to assist the development of anti-COVID-19 
drugs, an integrated screening strategy that combined 
machine learning and molecular simulation approaches 

(22,23) was developed and further utilized to perform the 
screening of SARS-CoV-2 PLpro inhibitor. As a result, 
the current study identified seven compounds (Cpd-1~4, 
Cpd-6, Cpd-8, and Cpd-14) that exhibited higher binding 
affinity on PLpro compared to GRL0617. Among them, 
two compounds, Cpd-1 and Cpd-3, showed more potent 
inhibitory activity than the currently best-performing 
compound, Jun12682. These compounds hold promise 
for advancing the development of a new generation of 
inhibitors targeting SARS-CoV-2 and its variants.

2. Methods

The screening strategy of SARS-CoV-2 papain-like 
protease inhibitors in the current study refers to machine 
learning-based classification, molecular simulation 
(molecular docking, molecular dynamics simulation, 
and quantum chemical calculation) based screening and 
verification. The workflow of the screening strategy is 
exhibited in Figure 2.

2.1. Data preparation

The initial database was constructed based on the 
inhibitory activity data for 3,935 FDA-approved drugs 
and clinical trial candidate compounds against SARS-
CoV-2 PLpro (24). To ensure data quality, the following 
preprocessing steps were performed before training 
the machine learning models: (1) Eliminating the 
compounds with invalid information, such as lacking 
structural information, containing ambiguous or even 
non-numeric data. Only compounds with structural 
information (in SMILES format) and inhibition 
rates against SARS-CoV-2 PLpro were retained. (2) 
Establishing an activity threshold of 60%, wherein 

(190)

Figure 1. Representation and classification of SARS-CoV-2 PLpro inhibitors.
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human pharmacokinetics significantly reduce both the 
development time and costs. Moreover, surveys by the 
National Cancer Institute have shown that three-quarters 
of all drugs used globally over the past half-century to 
treat various human diseases are derived from natural 
resources. Therefore, for the final screening of potential 
SARS-CoV-2 PLpro inhibitors, 3,815 compounds from 
FDA-approved drugs (previously unevaluated) and 
natural products curated from the ZINC database, as well 
as the COVID Moonshot platform were compiled as 
prediction dataset (Supplementary Materials 4).

2.2. Machine learning

Six molecular descriptors and fingerprints, including 
Morgan fingerprint (MorganFP), MACCS fingerprint 
(MACCSFP), E-state fingerprint (E-stateFP), Avalon 
fingerprint (AvalonFP), Atom-pairs fingerprint (Atom-
PairFP) and RDKit descriptors (RDKit-Des), were 
employed to describe the molecular structures when 
performing the machine learning. Further details 
regarding the molecular fingerprints and descriptors 

compounds with an inhibition rate of 60% or higher 
were defined as active, while those lower than 60% were 
labeled as inactive. As a result, a binary dataset of 3,428 
compounds consisting of 249 active and 3,179 inactive 
data was obtained (Supplementary Materials 1). (3) In 
view of the imbalance between active and inactive data, 
1,000 compounds randomly selected from the inactive 
data, together with all the active data, were collected to 
construct a combined dataset of 1,249 compounds with 
a 4:1 ratio of inactive to active data (Supplementary 
Materials 2). (4) Further splitting the combined dataset 
into an 8:2 ratio for machine learning model training 
and internal validation. To achieve more realistic model 
performance, a 5-fold cross-validation strategy was 
applied. Additionally, 79 active compounds obtained 
from SARS-CoV-2 PLpro patent literature and 341 
compounds randomly selected from the inactive data 
were collected for external validation (Supplementary 
Materials 3).
 FDA-approved drugs (https://www.fda.gov/) 
are increasingly favored for new drug development 
because their well-documented toxicity profiles and 

Figure 2. Workflow of the screening strategy in the present study.
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can be found in Table S1 (https://www.ddtjournal.com/
action/getSupplementalData.php?ID=261). Meanwhile, 
14 algorithms, including decision trees, random forests, 
extreme gradient boosting (XGBoost), support vector 
machines (SVM), gradient boosting decision trees, 
gradient boosting machines (GBM), logistic regression, 
K-nearest neighbors (KNN), linear discriminant analysis 
(LDA), stochastic gradient descent, adaptive boosting, 
bootstrap aggregating, voting classifier, and multilayer 
perceptron classifier were adopted for machine learning 
model construction. Eventually, a total of 84 machine 
learning models were generated and further evaluated to 
establish the SARS-CoV-2 PLpro inhibitors screening 
models. In addition, RDKit was employed for the 
generation of all molecular features and fingerprints, 
and scikit-learn was employed to implement the model 
construction.
 To evaluate the predictive ability and robustness of 
the constructed machine learning models, the following 
evaluation metrics were used in this study: area under 
the receiver operating characteristic curve (AUC), 
F1 score (F1), precision (Pre), sensitivity (Se), and 
specificity (Sp). The calculation methods of them are 
listed as follows:

Pre = TP ⁄ (TP + FP)
Se = TP ⁄ (TP + FN)
Sp = TN ⁄ (TN + FP)

F1 = 2 × (Pre × Se) ⁄ (Sp + Se)

Where, true positive (TP) refers to instances correctly 
classified as positive, while true negative (TN) denotes 
those correctly classified as negative. False positive (FP) 
represents instances incorrectly classified as positive, and 
false negative (FN) denotes those incorrectly classified 
as negative. The F1 score is a metric that provides a 
comprehensive evaluation of the model by considering 
both precision (Pre) and sensitivity (Se). A higher F1 
score (closer to 1) indicates a stronger generalization 
ability of the mode. AUC is a key indicator for evaluating 
the performance of classification models. The model 
performance will be better if the AUC value is closer to 1 
(25).

2.3. Molecular docking

The initial receptor model was constructed based on the 
crystal structure of the SARS-CoV-2 PLpro in complex 
with GRL0617 (PDB ID: 7CJM). Protein and ligand 
parts were extracted and processed for subsequent 
molecular docking experiments. Compounds screened 
by the machine learning model underwent further 
optimization using the OPLS4 force field. Protonated 
states of ionizable groups were defined at pH 7.0 ± 0.2, 
which simulated the slightly fluctuating pH conditions 
in the physiological environment. The protonated 
states of titratable residues in receptor structure were 

also calculated at the same pH for ligand preparation. 
Molecular docking analysis utilized AutoDock Vina (26), 
where the centroid of the ligand (GRL0617) was defined 
as the center of the docking grid, and the size of the grid 
was set to 25 × 25 × 25 Å3. Finally, flexible molecular 
docking based on induced fit theory was executed, and 
results (binding mode and docking score) with the best 
docking score were recorded.

2.4 Classical molecular dynamics simulation

The ligand-receptor complex models were obtained 
from molecular docking. All molecular dynamics (MD) 
simulations were performed using the pmemd module 
in the AMBER18 molecular simulation package. The 
Amber ff14SB force field (27) was employed for the 
protein, and the TIP3P model (28) was used for the 
solvent water molecules. The force field parameter of 
the ligand was generated from the general AMBER 
force field (GAFF), and the partial atomic charge was 
defined by the restrained electrostatic potential (RESP) 
(29) charge based on HF/6-31G* calculation with the 
Gaussian09 package.
 The initial coordinates and topology files were 
generated by the tleap program with neutralization and 
solvation. The subsequent classical MD simulations 
were carried out by using the periodic boundary 
condition with the cubic model. After a series of energy 
minimization, programmed heating (0 to 300 K, NVT, 
100 ps), density equilibrium (300 K, 1.0 atm, NPT, 
100 ps), and preequilibrium (300 K, 1.0 atm, NPT, 
100 ps), a final 100 ns MD simulation with a 2 fs 
time step was performed under the NVT ensemble to 
generate trajectories. During the MD simulation, the 
high-frequency stretching vibration of all hydrogen-
containing bonds was constrained by using the 
SHAKE algorithm (30), and a 12 Å cutoff was applied 
to van der Waals (LJ-12 potential) and electrostatic 
interactions (PME strategy). Finally, cpptraj was used 
for trajectories analysis and PyMOL was used for 
visualization.
 The binding free energy was calculated using the 
MM/GBSA method (31) via the MMPBSA.py module, 
based on 100 snapshots extracted from the stable phase 
of the MD trajectory. All energies were expressed in 
kcal/mol. The calculation method for binding free energy 
is listed as follows:

ΔGbind = Gcomplex - Greceptor + Gligand

Where, ΔGbind represents the total binding free energy 
between PLpro and its inhibitor. Gcomplex denotes 
the energy of the protein-inhibitor complex, while 
Greceptor and Gligand refer to the individual energies of 
the PLpro and the inhibitor, respectively. The free 
energy components in the MM/GBSA approach were 
determined as follows:

https://www.ddtjournal.com/action/getSupplementalData.php?ID=261
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         ΔGbind = ΔGgas + ΔGsolv - TΔS
                   = ΔEvdw + ΔEele + ΔGpolar + ΔGnonpola - TΔS
                   = ΔEvdw + ΔEele + ΔEGB + ΔESA - TΔS

Herein, ΔGgas and ΔGsolv denote the gas-phase and 
solvation energy components of the total free energy 
(ΔGbind), respectively. ΔGgas consists of van der Waals 
(ΔEvdw) and electrostatic (ΔEele) contributions. ΔGpolar and 
ΔGnonpolar refer to the polar and nonpolar components of 
the solvation free energy, respectively. The terms ΔEGB 
and ΔESA represent the polar and nonpolar contributions, 
respectively. The absolute temperature of the system 
is denoted by T, and the entropy related to the system 
is denoted as ΔS. The term TΔS represents the entropy 
contribution.

2.5 Electrostatic potential calculation

The Gaussian09 program (Revision D.01) was utilized 
to calculate the electrostatic potential surface of the 
screened molecules. The calculation was performed 
based on density functional theory (DFT) at the 
B3LYP/6-311+G(2d,p) level. The restrained electrostatic 
potential (RESP) charges were computed using 
Multiwfn. Finally, Visual Molecular Dynamics (VMD, 
version 1.9.4a53) was used to visualize the molecular 
surface electrostatic potential maps, providing a clear 
graphical representation of the charge distribution across 
the molecules.

3. Results

3.1. Reliability analysis of datasets
Reliable datasets that refer to the training and validating 
set are an important guarantee for the accurate 

construction of the machine learning models. Herein, 
we applied t-distributed stochastic neighbor embedding 
(t-SNE) analysis by using a Euclidean distance metric 
to evaluate the reliability of the datasets for machine 
learning. Figure 3 illustrates the chemical space 
distributions of the collected compounds in training, 
validation, and prediction datasets, as visualized by 
t-SNE. Results showed that the distribution of training 
and validating datasets overlapped sufficiently, 
indicating that the construction and evaluation of the 
machine learning models are reliable. Furthermore, the 
distribution of datasets for model application (prediction 
dataset) and model construction (training and validation 
datasets) also presented a rough overlap, demonstrating 
the reliability of the subsequent machine learning-based 
SARS-CoV-2 PLpro inhibitor screening.

3.2. Machine learning-based model construction and 
application

To construct an accurate SARS-CoV-2 PLpro inhibitor 
prediction strategy, we developed 84 classification 
models based on 14 machine learning algorithms 
combined with 6 molecular fingerprints. Figure 4 shows 
the performance of the constructed classification models, 
which were evaluated through AUC and F1 score.
 The performance of these models exhibited significant 
variations. For the machine learning algorithms, the 
average AUC values for the Random Forest, XGBoost, 
SVM, and GBDT models were dramatically higher 
than those of other models, as summarized on the right 
sidebar of Figure 4A, demonstrating the excellent 
performance of these four algorithms. Among them, 
models constructed with the Random Forest algorithm 
exhibited the best performance (with most models' 
AUC values closer to 1). For molecular fingerprints and 

Figure 3. t-SNE of training, validation, and prediction datasets.
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descriptors, models employing MACCSFP, E-stateFP, 
AvalonFP, Atom-PairFP, and RDKit-Des achieved higher 
AUC values, especially for models with the four superior 
algorithms (Random Forest, XGBoost, SVM, and 
GBDT, where the AUC values exceeded 0.90 for most 
models). In contrast, models using MorganFP showed a 
lower performance (below 0.75). Additional assessment 
criteria (F1 score listed in Figure 4B) also highlighted the 
superior performance of models with the algorithms and 
descriptors aforementioned. Overall, models constructed 
by Random Forest algorithm with the five descriptors 
(MACCSFP, E-stateFP, AvalonFP, Atom-PairFP, and 
RDKit-Des) were level pegging in the internal validation 
(Figure 4A~B and Table S2, https://www.ddtjournal.
com/action/getSupplementalData.php?ID=261). 
Furthermore, an external validation dataset containing 
79 active compounds and 341 inactive compounds was 
introduced to evaluate the generalization ability of the 
five models as shown in Figure 4C and Table S3 (https://
www.ddtjournal.com/action/getSupplementalData.
php?ID=261). Apparently, four models presented 
superior performance with AUC and F1 score about 
0.90, whereas the Random Forest-RDKit model was 
slightly inferior compared with other models, with both 
assessment criteria being lower than 0.90. Consequently, 
models based on Random Forest models with four 
molecular fingerprints (MACCSFP, E-stateFP, Atom-
PairFP, and AvalonFP) were selected for the subsequent 
screening of compounds with potential SARS-CoV-2 
PLpro inhibition activity.
 In order to obtain the SARS-CoV-2 PLpro inhibitor 
more efficiently, we adopted a strategy of using 
multiple models to present the intersection of results 
to perform the machine learning-based compound 

screening. Herein, the Venn diagram obtained from the 
online data visualization tool Venn (http://www.ehbio.
com/test/venn) was employed. As shown in Figure 5, 
each of the four machine learning models was able 
to screen out approximately 100 compounds from 
the prediction database, among which 42 compounds 
listed in Table S4 (https://www.ddtjournal.com/action/
getSupplementalData.php?ID=261) were obtained as the 
intersection of the four models eventually. In general, the 
42 compounds that have been identified simultaneously 
by the four different classification models tend to have a 
higher probability of being active against SARS-CoV-2 
PLpro. The current strategy that taking the intersection 
of multiple model predictions can reduce the probability 
of false positives, and further improve the efficiency of 
drug discovery.

3.3. Molecular simulation-based compound assessment

After screening out the compounds with potential 
inhibitory activity, molecular docking-based binding 
affinity evaluation was employed to obtain the 
compounds with high inhibitory activity targeting SARS-
CoV-2 PLpro. Reliability evaluation of the molecular 
docking protocol used in the present study was performed 
in the first instance. As displayed in Figure S1 (https://
www.ddtjournal.com/action/getSupplementalData.
php?ID=261), the redocked binding conformations 
of the two ligands (GRL0617 and Jun12682) were 
consistent with their original conformations in the 
co-crystal structures, namely, the molecular docking 
protocol adopted in the present study can describe the 
ligand-protein interactions precisely. Subsequently, 
binding affinities of the 42 compounds screened from 

Figure 4. Performance evaluation of the constructed machine learning models. Heatmap of AUC (A) and F1 score (B) in internal validation. 
(C) The AUC values and F1 scores in external validation of models constructed by Random Forest algorithm with MACCSFP, E-stateFP, Atom-
PairFP, AvalonFP, and RDKit-Des.
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the machined learning-based classification models 
were calculated through molecular docking. Fifteen 
compounds were identified with high inhibitory activity 
compared with GRL0617, however, no compound was 
found to be more potent than Jun12682 (binding affinity 
data were listed in Table S4 (https://www.ddtjournal.
com/action/getSupplementalData.php?ID=261), and 
the fifteen compounds were renamed as Cpd-1~15 for 
convenience in Figure S1 (https://www.ddtjournal.com/
action/getSupplementalData.php?ID=261).
 Considering that the target binding affinity of 
some compounds (such as Cpd-1, -9.38 kcal/mol) 
was very close to that of Jun12682 (-9.57 kcal/mol), 
we further employed a dynamic evaluation method 
based on molecular dynamics (MD) simulation to 
provide more accurate assessments on the potential 
inhibitory activity of the fifteen compounds. A total of 
18 systems that contained Cpd-1~15, the two positive 
compounds GRL0617 and Jun12682, as well as the apo 
form of the target protein, were simulated through the 
MD simulation. Confirmed by the root mean square 
deviation (RMSD), all systems reached the equilibrium 
state within 100 ns MD simulation (Figure S2, https://
www.ddtjournal.com/action/getSupplementalData.
php?ID=261). The target binding free energies of 
Cpd-1~15, GRL0617, and Jun12682 were calculated 
based on the MM/GBSA method and demonstrated 
in Figure S3 (https://www.ddtjournal.com/action/
getSupplementalData.php?ID=261). Under the more 
accurate evaluation method, only 7 compounds (Cpd-

1~4, Cpd-6, Cpd-8, Cpd-14) revealed superior target 
binding ability than GRL0617, which was significantly 
different from the result with a molecular docking-
based evaluation approach. Surprisingly, Cpd-1 and 
Cpd-3 exhibited dramatically high target binding ability, 
suggesting their potential as more potent inhibitors 
than the current best-performing SARS-CoV-2 PLpro 
inhibitor Jun12682.

3.4. Analysis of ligand-receptor interactions

Figure 6A displays the decomposition of the binding free 
energy of the seven highly active compounds and the two 
positive compounds to the target. Apparently, the gas-
phase energy component (ΔGgas) is the prime contributor 
to binding free energy (ΔGbind). Compounds with more 
tight binding to the target (Cpd-1~3 and Jun12682 with 
lower ΔGbind) possess significantly low ΔGgas (about -150 
kcal/mol for Cpd-1~3 vs. about -70 kcal/mol for others). 
According to the computational principle, ΔGgas consists 
of van der Waals (ΔEvdw) and electrostatic (ΔEele) terms. 
Values of the two terms for these compounds are both 
correlated with the trend of final ΔGbind. Nevertheless, 
the differences of ΔEele term for all the 9 compounds are 
apparently higher than those of ΔEvdw (-16.66~-117.34 
kcal/mol for ΔEele and -31.84~-54.60 kcal/mol for ΔEvdw), 
indicating that the electrostatic interactions are critical 
for the ligand binding to the target.
 Further ligand-protein interaction analysis was 
performed to present more detailed descriptions of the 
binding pattern of the screened compounds with SARS-
CoV-2 PLpro. As shown in Figure 6B, all the nine 
compounds bind to the binding site through some polar 
interactions such as hydrogen bonds and π–π interactions. 
Especially, these interactions are extremely abundant 
in the binding pattern of highly active compounds to 
the target, which could be a reasonable explanation 
on the critical role of electrostatic interactions to the 
ligand binding. For the binding site in target protein, 
the aromatic side chain of Tyr268 provides CH–π or π–
π interactions with most compounds, and Asp164 and 
Gln269 are conserved in the hydrogen bond interactions 
of almost all compounds. Additional hydrogen bond 
occupancy analysis also suggested the pivotal role of 
these polar residues in ligand binding (Table S5, https://
www.ddtjournal.com/action/getSupplementalData.
php?ID=261). In particular, Asp302 shows the same 
binding area as Asp164 as revealed in Figure 6B, 
contributes a hydrogen bond occupancy of 104.98% in 
the binding pattern of Cpd-1, and Asp164 donates as 
high as 179.52% in the binding pattern of Cpd-3. The 
total hydrogen bond occupancy related to Cpd-1 and 
Cpd-3 was significantly higher than that of Jun12682 
and GRL0617, demonstrating again the superior target 
binding ability of Cpd-1 and Cpd-3.

3.5 Identification of key residues on ligand binding

Figure 5. Interactive Venn diagrams for the intersection of 
multiple model predictions.
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For a more detailed presentation, binding free energy 
contributions of some crucial residues in the four 
ligand-receptor binding systems were calculated and 
displayed in Figure 7A. Results indicate that most of 
these residues make favorable contributions to the ligand 
binding, among which Tyr268 makes significant and 

conserved contributions to the four compounds. Notably, 
the contribution of Asp164 on the binding of Cpd-3 
is dramatically high among all residues, and Asp302 
provides a remarkable contribution to the binding of 
Cpd-1. The residue binding free energy contributions 
are consistent with the distributions of hydrogen bond 

Figure 6. (A) Decomposition of binding free energy (kcal/mol) for the nine compounds. (B) Binding modes of the nine compounds in the 
binding site of SARS-CoV-2 PLpro. Ligands and key residues are shown with cyan and yellow stick models, respectively. Hydrogen bonds are 
represented by black dashed lines, π–π and CH–π interactions are represented by red dashed lines.

Figure 7. (A) Binding free energy contributions of some key residues in the four ligand-receptor binding systems. (B) Surface electrostatic 
potential maps of the four compounds in binding conformations. Electron-deficient and electron-rich regions are colored in blue and red, 
respectively. Some key residues around them are highlighted in circles.
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occupancy aforementioned, which highlights the 
significance of these polar residues in ligand binding, 
and also provides reasonable explanations for the high 
target binding free energy of Cpd-1 and Cpd-3.
 Figure 7B illustrates the surface electrostatic 
potentials of the four compounds in the specific 
conformation when binding to SARS-CoV-2 PLpro. 
Apparently, some electronegative residues, like Asp164, 
Glu167, and Asp302, are situated around the electron-
deficient region of the ligand, and Gln269 is close to the 
electron-rich region. Such an electrical matching mode 
can disperse the charge and provide a favorable ligand-
protein binding pattern. In summary, the favorable 
electrostatic potential contributions of the key residues 
would provide valuable insights for the development of 
more potent and highly selective SARS-CoV-2 PLpro 
inhibitors.

4. Discussion

The current study highlights the significance of targeting 
the protease PLpro in the development of COVID-19 
therapeutics, given the rapid mutation and widespread 
transmission of SARS-CoV-2. While some candidates, 
such as GRL0617 and its analogs, have shown weak 
to moderate in vitro potency, they often suffer from 
limitations that hinder clinical translation, such as 
insufficient antiviral activity and metabolic stability in 
vitro and in vivo (32), poor pharmacokinetic performance 
(33), limited selectivity (34), or toxicity concerns (35). To 
overcome these limitations, we employed an integrated 
screening strategy combining machine learning and 
molecular simulation approaches, which led to the 
identification of seven promising PLpro inhibitors (Cpd-
1~4, Cpd-6, Cpd-8, and Cpd-14). Among them, Cpd-
1 and Cpd-3 exhibited the strongest binding affinities 
and inhibitory potential against PLpro, making them 
prime candidates for further experimental validation. In 
addition, we identified several key residues critical for 
ligand binding, which may inform future optimization 
efforts aimed at enhancing potency and selectivity.
 Although the present findings are promising, 
they merely represent initial steps towards drug 
development. To verify the reliability and therapeutic 
potential of the identified compounds, extensive 
experimental validation is still required. In this 
study, we employed a series of molecular simulation 
techniques—including molecular docking and 
molecular dynamics simulations—to assess the binding 
stability of candidate inhibitors with SARS-CoV-2 
PLpro. While such computational strategies are highly 
valuable for identifying promising drug candidates (36), 
their outcomes must be substantiated by experimental 
data. Therefore, future research will focus on enzymatic 
assays and cell-based antiviral evaluations to confirm 
the inhibitory activity and antiviral efficacy of the 
screened compounds, thereby facilitating their further 

advancement toward clinical application.
 In conclusion, our study contributes to overcoming 
the limitations that hinder clinical translation in two 
key ways. First, the integration of machine learning and 
molecular simulations offers an efficient framework 
for identifying structurally novel and potentially 
more drug-like inhibitors. Second, our residue-level 
interaction analysis provides mechanistic insights that 
may guide further lead optimization to improve target 
specificity and binding stability. While experimental 
validation is still required, our findings offer a solid 
foundation for the rational development of next-
generation PLpro inhibitors. The candidate compounds 
and structural insights reported here may help accelerate 
the development of effective antivirals targeting SARS-
CoV-2 and its evolving variants.
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