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Imatinib is an oral molecular targeted therapy that acts as a tyrosine kinase inhibitor. Silkworms 
present a promising experimental model for elucidating the pharmacokinetic and toxicity profiles of 
various compounds. This study aimed to establish an experimental paradigm for investigating the 
pharmacokinetics of imatinib in silkworms. A comparative analysis of imatinib pharmacokinetic 
parameters across silkworms, humans, mice, and rats revealed similarities in time to maximum 
concentration (Tmax) and apparent clearance values between silkworms and humans. However, 
differences in elimination half-life (t1/2) and apparent volume of distribution between silkworms 
and humans remained within 5- and 4-fold ranges, respectively. Importantly, mice demonstrated 
pharmacokinetic parameters closer to those of humans than rats during imatinib studies. Additionally, 
silkworms and mice exhibit similar Tmax and t1/2 values. This study highlights the potential of silkworms 
as valuable tools for investigating imatinib metabolism in pharmacokinetic studies. Furthermore, it 
underscores the applicability of silkworms in elucidating the pharmacokinetic parameters of various 
molecular-targeted drugs, thus facilitating advancements in drug development and evaluation.

1. Introduction

The tyrosine kinase inhibitor imatinib was the first oral 
molecular targeted drug developed to target a specific 
protein kinase and is currently approved as standard 
care for patients with BCR-ABL-positive chronic 
myeloid leukemia and gastrointestinal stromal tumors 
(1). Imatinib interacts with several metabolic enzymes 
that are major sites of drug–drug interactions (DDIs). 
It is primarily metabolized by cytochrome P450 (CYP) 
3A4. Co-administration of imatinib with CYP3A4 and 
P-glycoprotein modulators alters the pharmacokinetic 
profile of imatinib (2). Intra- and inter-individual 
variabilities in drug exposure have been extensively 
documented (3). Thus, imatinib is a drug for which 
therapeutic drug monitoring is recommended due to its 
exposure–response and exposure–safety relationships (4). 
The feasibility of therapeutic drug monitoring-guided 
dosing to achieve a minimum blood plasma imatinib 
concentration of 750-1,500 ng/mL was demonstrated in a 
prospective randomized controlled trial (5).
 The  s i lkworm Bombyx  mori  i s  a  va luable 
experimental animal for evaluating the pharmacokinetic 
and toxicity of compounds (6). Compared to mammals, 

silkworms offer several advantages, including lower 
breeding costs, suitability for rearing in smaller spaces, 
fewer ethical concerns, and easier quantification 
of injected sample solutions (7). Moreover, drug 
pharmacokinetic and toxicity in silkworms have been 
studied (6,8). Compound absorption from the silkworm 
intestinal tract is similar to that of mammals (9,10). The 
total clearance, volume of distribution, and half-life 
values of antimicrobial agents such as chloramphenicol, 
tetracycline, vancomycin, rifampicin, micafungin, 
and fluconazole are also comparable in silkworms 
and mammals (11). Therefore, silkworms are suitable 
experimental animals for evaluating the pharmacokinetic 
of imatinib. However, the pharmacokinetic of imatinib 
in silkworms has not yet been studied. Our study aimed 
to develop an experimental model for studying the 
pharmacokinetic of imatinib in silkworms.

2. Materials and Methods

2.1. Reagents

Imatinib (Tokyo Chemical Industry Co., Ltd., Tokyo, 
Japan) was dissolved in methanol (Wako, Osaka, Japan), 
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and stored as a stock solution (10 mg/mL) at −60°C until 
use. For silkworm injections, imatinib was diluted with 
physiological saline (0.9% w/v NaCl). High-performance 
liquid chromatography (HPLC)-grade acetonitrile and 
methanol (Kanto Chemical Co., Inc., Tokyo, Japan) and 
KH2PO4 (FUJIFILM Wako Pure Chemical Corporation, 
Osaka, Japan) were utilized as HPLC mobile phases.

2.2. Silkworm rearing

Silkworm rearing followed established procedures (12). 
Silkworm eggs, acquired from Ehime-Sanshu Co., Ltd. 
(Ehime, Japan), were disinfected and incubated at 25-
27°C. Silkworms were nourished with an artificial diet, 
Silkmate 2S, supplemented with antibiotics from Ehime-
Sanshu Co., Ltd. Fifth-instar larvae were employed for 
infection experiments.

2.3. Pharmacokinetic study

To measure the pharmacokinetic parameters of imatinib 
in the silkworm model, hemolymph samples were 
collected at 0.1, 1, 2, 4, 8, and 12 h post- imatinib 
injection (10 mg/kg). Fifth instar silkworm larvae 
were fasted overnight on Silkmate 2S diet. Imatinib 
solution (50 μL, 10 mg/kg) was administered into 
the midgut using a 1 mL tuberculin syringe (Terumo 
Medical Corporation, Tokyo, Japan). Hemolymph 
collection followed a previously established method (13). 
Hemolymph was obtained by severing the first leg and 
centrifuging at 8,000 rpm for 3 min (MX-100; Tomy 
Seiko Co., Ltd., Tokyo, Japan). The supernatant (50 µL) 
was mixed with 450 µL of methanol and centrifuged at 
15,000 rpm for 15 min. The resulting supernatant was 
subjected to HPLC analysis.

2.4. HPLC conditions for detecting imatinib

The HPLC system used for detecting imatinib in 
silkworm hemolymph comprised a pump (PU-4180, 
Jasco, Tokyo, Japan), UV detector (UV-4075, Jasco, 
Tokyo, Japan), and autosampler (AS-4550, Jasco, 
Tokyo, Japan). An octadecylsilyl column (Capcell Pack 
C18 MG II, 250 mm × 4.6 mm i.d., 5 µm; Osaka Soda, 
Tokyo, Japan) with a guard column (Capcell Pack C18 
MG II guard column, 10 mm × 4.0 mm; Osaka Soda, 
Tokyo, Japan) served as the analytical column at 25℃ 
(room temperature). Detection wavelength was set at 
250 nm. The mobile phase consisted of acetonitrile and 
0.5% KH2PO4 (pH 4.4; 32:68, v/v), with a flow rate of 
1.0 mL/min. A 10 µL sample of silkworm hemolymph, 
prepared as previously described, was injected. 
Calibration concentrations for imatinib ranged from 0.25 
to 12.5 µg/mL. The retention time for imatinib was 6.0 
min. A linear six-point standard calibration curve was 
established over the concentration range of 0.25-12.5 
µg/mL.

2.5. Pharmacokinetic analysis

HPLC was used to measure imatinib concentration 
in silkworm hemolymph (n = 3 silkworms). Non-
compartmental pharmacokinetic analysis of imatinib 
was conducted using Phoenix WinNonlin 8.3 (Certara, 
Princeton, NJ, USA).

3. Results and Discussion

The time course of imatinib concentration in silkworm 
hemolymph following injection of 10 mg/kg imatinib 
into the midgut is illustrated in Figure 1. The maximum 
concentration and time to maximum concentration (Tmax) 
were 6.5 ± 0.8 µg/mL and one hour, respectively. The 
elimination half-life (t1/2) was 2.9 hours. The apparent 
volume of distribution (Vz/F) and apparent clearance 
(CLz/F) were calculated as 1,315 mL/kg and 319 mL/h/
kg, respectively.
 Table 1 presents a comparison of imatinib 
pharmacokinetic parameters in silkworms, humans, 
mice, and rats (14-17). The Tmax and CLz/F values 
of imatinib showed similarities between silkworms 
and humans. The differences in t1/2 and Vz/F between 
silkworms and humans were within 5-fold and 4-fold 
ranges, respectively. Notably, the Vz/F and CLz/F ratios 
were lowest in rat models. In mice and humans, the 
Vz/F was within a 2-fold range, while the CLz/F was 
approximately 10-fold greater in mice than in humans. 
Interestingly, the imatinib pharmacokinetic parameters 
of mice exhibited a closer resemblance to those of 
humans than those of rats. Additionally, both Tmax and t1/2 
were comparable between silkworms and mice. Thus, 
our findings suggest that silkworms hold promise for 
pharmacokinetic studies aimed at evaluating imatinib 
metabolism. The results of this study imply the potential 
for clarifying pharmacokinetic parameters of other 
molecular targeted drugs using silkworms.
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Figure 1. Time course of imatinib concentration changes in 
silkworm hemolymph. Imatinib injected into the silkworm midgut, 
followed by hemolymph harvesting at 0.1, 1, 2, 4, 8, and 12 h post-
injection. n = 3/group.
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concomitant medications, there is a heightened 
susceptibility to DDIs. Furthermore, patients with cancer 
frequently turn to herbal products to ameliorate treatment 
side effects and enhance quality of life. However, the 
cumulative impact of these co-administrations on the 
pharmacokinetic of imatinib remains inadequately 
explored. Therefore, future investigations are warranted 
to assess the pharmacokinetic profile of imatinib in the 
context of DDIs, shedding light on potential interactions 
with commonly co-prescribed medications in clinical 
practice. In conducting those studies, we found it 
useful to examine the use of silkworms as experimental 
animals.
 In conclusion, our study demonstrates the utility 
of silkworms as an alternative animal model for 
investigating the single-dose pharmacokinetics of 
imatinib during the clearance phase.
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