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The incidence rate of thyroid carcinoma, especially papillary thyroid carcinoma (PTC), has 
increased significantly over time. As a primary pathway for metastasis, the lymphatic system is an 
important prognostic factor for PTC patients. Although the metabolic changes in PTC patients have 
been investigated in extensive studies, few studies focused on the whole blood metabolic profiling 
of PTC patients. In this study, we investigated the 1H NMR-based metabolic profiles of whole blood 
samples that were obtained from healthy individuals and PTC patients, with or without lymph node 
metastasis. The estimation of the predictive potential of metabolites was evaluated using multivariate 
statistical analyses, which revealed that the whole blood carries information that is sufficient for 
distinguishing between PTC patients and healthy individuals. However, PTC patients were not well 
classified as positive or negative according to the lymph nodes. We did not find a metabolite that 
could discriminate the presence of lymph node metastasis. Further studies with larger sample sizes 
are needed to elucidate significant metabolites to indicate the presence of lymph node metastasis in 
patients with PTC.

1. Introduction

Papillary thyroid carcinoma (PTC) is the most common 
type of thyroid cancer, representing 75-85% of all thyroid 
cancer cases (1). Surgery is the elective treatment for 
papillary thyroid carcinoma. Preoperative distinction 
between benign and malignant conditions is crucial to 
avoid overtreatment of patients and morbidity linked 
with an inappropriate surgery (2,3). Clinical research 
in thyroid pathology is focusing on the development 
of new diagnostic tools to improve the stratification of 
nodules that have biological, practical, and economic 
consequences on the management of patients. Ultrasound 
plays an increasingly important role in the diagnosis 
of the thyroid nodule, and the ultrasound-guided fine-
needle aspiration biopsy (FNAB) has become the gold 
standard for preoperative judgment in thyroid carcinoma 
patients (4,5).
 As an invasive diagnostic method, FNAB presents a 
certain risk of bleeding and a low possibility of needle 
tract metastasis. Patients receiving FNAB often require 

surgery as soon as possible due to the risk of nodule 
enlargement or change in nodule nature. Therefore, 
the development of new diagnostic methods that could 
provide useful clinical information for the non-invasive 
diagnosis of the nature of thyroid nodules and lymph 
nodes is particularly important (6). We hope that this 
approach will decrease unnecessary repeated biopsies 
and surgical procedures.
 Metabolomics is the systematic study of small 
molecular metabolites in cells, tissues, biofluids or cell 
culture medias, and provides tangible results regarding 
cellular processes or responses to environmental 
stresses (7). In general, cancer cells have an impaired 
energy metabolism, and metabolic intermediates 
typically accumulate in tumors (8). Metabolomics is 
now recognized as a powerful technique for identifying 
biomarkers and altering the metabolic pathways in 
cancer, including nucleotide synthesis, glycolysis, 
phospholipid and fatty acid metabolism, and amino acid 
metabolism (9,10). Metabolomics has been increasingly 
used to identify biomarkers for early diagnosis and 
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understanding the potential mechanisms of various 
cancers (11). In human studies, blood samples are used 
to capture a physiological average of the host's metabolic 
status and serum is routinely collected, which makes 
it a frequent and convenient sample for metabolomics 
studies.
 However, the analysis of the serum metabolome does 
not consider the contribution of erythrocytes (12,13). 
Compelling evidence suggests a significant value of 
erythrocytes for metabolite profiling of whole blood in 
investigations of human health and diseases (13-16). 
The major advantage of whole blood analysis is that it 
provides access to both the plasma, serum, and red blood 
cell metabolome in one step and eliminates many of the 
pre-analytical processing problems with little additional 
effort compared to the traditionally used serum or plasma 
analysis (12,17). Thus, whole blood metabolomics offers 
an added opportunity to gain insights into additional 
metabolites and metabolic pathways.
 In the present study, we investigated and compared 
the metabolomics characteristics of the whole blood from 
PTC patients and healthy controls using an untargeted 
metabolomics approach based on 1H NMR, coupled 
with multivariate statistical analyses. The metabolic 
differences according to the presence or absence of 
lymph node metastasis (LN) in patients with PTC were 
also investigated in our study, in the search for a potential 
novel prognostic biomarker.

2. Materials and Methods

2.1. Chemical Regents

Deuterium water (D2O, 99.8%) was purchased from 
Tenglong Weibo Technology Co., Ltd. (Qingdao, 
China). High-performance liquid chromatography 
(HPLC) grade methanol, and 3-(trimethylsilyl)-1-
propanesulfonic acid-d6 sodium salt (DSS-d6) was 
purchased from Sigma-Aldrich (St. Louis, MO, USA). 
All other chemical reagents were analytical grade.

2.2. Clinical samples and processing of whole blood

We collected whole blood samples from patients who 
underwent thyroid surgery (n = 80) from the department 
of breast and thyroid surgery between January 2017 
and October 2018, with prior ethical approval by the 
Institutional Ethics Committee, Shandong Provincial 
Hospital. The whole blood samples were collected 
from age matched healthy volunteers (n = 47). All 
patients signed informed consent before participating 
in the study. The patients enrolled in this study did not 
receive any chemotherapy or radiation therapy before 
surgical treatment. The clinical details and pathological 
features of all study subjects are listed in Table 1. All 
samples were collected in EDTA-coated whole blood 
collection vials. Following collection, samples were 

placed in an ice-water bath. 1 ml aliquots of blood 
were placed in cryogenic tubes and immediately flash 
frozen in liquid nitrogen before being stored at 80ºC. 
Whole blood samples were stored at 80ºC until further 
experimentation.

2.3. Sample processing for NMR spectroscopy

The reagents were kept ice-cold before use. To extract 
the metabolites, 400 μL of whole blood was mixed 
with cold methanol in a 1:2 sample/methanol (v/v) 
ratio. All sample solutions were then vortexed for 30 
s, and sonicated for 2 min at 4°C. The mixtures were 
centrifuged at 14,600 rpm for 20 min to pellet the 
proteins and cell debris (12). The clear aqueous solutions 
were transferred to fresh vials and evaporated to dryness 
at 45°C in a speedvac concentrator (SPD2010 Integrated 
SpeedVac, ThermoFisher Scientific, USA). The dried 
samples were mixed with 600 μL phosphate buffer 
containing 0.5 mM DSS-d6, and the pH was adjusted to 
7.0 with NaOH and/or HCl. Then, we spun the samples 
to sediment any residue, and the supernatants were 
transferred to 5 mm NMR tubes for analysis.

2.4. NMR experiments

All one-dimensional 1H NMR spectra were acquired 
using a Bruker Avance III 600 MHz NMR spectrometer 
(Bruker GmbH, Rheinstetten, Germany) operating at 
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Table 1. The clinical information and pathological features 
of all patients

Age (years, range)
   ≥ 45
   < 45
Sex
   Male
   Female
TNM stage
   Ⅰ
   Ⅱ
   Ⅲ
   Ⅳ
Primary tumor numbers
   1
   > 1
Primary tumor numbers 
(tumor size ≤ 10mm)
   1
   ≥ 1
Primary tumor size 
(mm)
   ≤ 10
   > 10
Primary tumor 
localization
   One side
   Both side

All Patients

41
39

27
53

27
  9
25
19

61
19

35
13

32
48

69
11

LN metastasis

19
25

24
20

  0
  0
25
19

30
14

13
  8

20
24

35
  9

No LN 
metastasis

22
14

  3
33

27
  9
  0
  0

31
  5

22
  5

12
24

34
  2
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the parameters of interpretability and the predictability 
of the model, respectively, which were used to evaluate 
the quality of the model. To identify the significant 
spectral peaks, variable importance in the projection 
(VIP) of > 1 was considered as a criterion for differences 
between different groupings, which was analyzed 
and taken as a coefficient from the OPLS model. The 
identified metabolites were chosen as discriminating 
ones, which met the conditions of VIP > 1. We 
generated an S-plots graph, and the variables of the 
two diagonals of the S-shape were considered as 
differential metabolites. According to the histogram of 
the VIP values and S-plots graph to preliminary screen 
differential metabolites, we used the MetaboAnalyst 
database to judge the types of metabolites and predict 
the metabolic pathways and intermediate metabolites in 
the metabolic pathways (18-20).

3. Results

3.1. 1H NMR metabolic profiles of whole blood samples

For the 1H NMR spectra of whole blood, the CPMG 
pulse sequence was used to suppress the resonances 
from macromolecules, such as proteins and lipoproteins. 
Typical 1H NMR spectra of whole blood samples are 
shown in Figure 1. The ppm scale was expanded to 
focus on the range of 0.8-9.0 ppm. The resonances 
attributed to a series of endogenous compounds were 
identified according to the literature and some public 
databases (HMDB and BMRB). These peaks were 
further assigned as lactate, lysine, acetic acid, arginine, 
glutamic acid, methionine, proline, 3-hydroxybutyric 
acid, aspartate, tyrosine, 1-methylhistidine, creatine, 
D-glucose, acetoacetate, L-threonine, L-ornithine, 
isopropyl alcohol, L-histidine, L-phenylalanine, 
hypoxanthine, and formate.

3.2. Multivariate statistical analysis

To perform a comprehensive comparison of the 
metabolic profiles among the groups, we employed PCA 
and O2PLS-DA with the first two principal components 
(Figure 2). The PCA scores plot showed that the PTC 
groups (LN-negative and LN-positive) and the normal 
group samples were scattered into different regions, 
whereas overlaps between the LN-negative and LN-
positive subjects were also observed in the PCA score 
plots. The majority of the samples were in the 95% 
confidence interval. Therefore, all the samples were 
used in the following analysis to ensure the maximum 
information.
 To further identify the metabolic characteristics 
of the patients, pairwise OPLS-DA was performed. 
Obvious separations between the normal group and 
PTC group, the normal group and LN-negative group, 
the normal group and LN-positive group, and the 

a proton frequency of 600.1 MHz, equipped with a 
cryoprobe at 298 K. The 1H NMR experiments were 
performed using the Carr-Purcell-Meiboom-Gill 
(CPMG) pulse sequence with water pre-saturation to 
remove broad signals of molecules. The CPMG spectra 
were recorded with 64,000 time domain data points, 
a 20.0 ppm spectral width, 32 scans, and a relaxation 
delay of 5 s. All data were manually phased, and 
baseline corrected. All resonances of the metabolites 
present in 1H NMR were confirmed by referring to the 
Biological Magnetic Resonance Bank (BMRB), Human 
Metabolome Database (HMDB), published research 
articles, and by comparing with standard data.

2.5. Data processing and analysis

The data were preprocessed with MestReNova 12.0 
(Mestrelab Research SL, Santiago de Compostela, 
Spain), and manual phasing adjustment of the raw NMR 
data (FID), and the post-processing consisted of Fourier 
transformation, phasing and baseline correction, cutting 
off the solvent peak (water peak, 4.75-4.91 ppm), 
and normalization. We then performed the piecewise 
binning; the spectral region from 1.1 to 9.00 ppm was 
segmented into 148 intervals with an equal width of 
0.05 ppm. The data were exported, converted to Excel 
format, examined, and removed from the solvent peak 
section.
 The normalized NMR data in Excel format were 
imported into statistical software SIMCA-P (Version 
14.0; Umetrics AB, Umea, Sweden) for multivariate 
statistical analysis, including principal component 
analysis (PCA), partial least squares discriminant 
analysis (PLS-DA), and orthogonal projection to latent 
structure (OPLS) analysis. PCA was first performed to 
determine possible outliers. The model type selected 
was PCA-X. We used the scale selected Par data 
processing mode, completed automatic fitting, and 
examined the abnormal points. Generally, two times 
the red line value was used as the abnormal point 
standard. If there were abnormal points, we deleted the 
corresponding data in the comprehensive analysis and 
checked the fit again. After no outlier points remained, 
the model type selected PLS-DA to build the PLS-DA 
model, and the order of the samples in the dataset was 
randomized. The discriminant version of the partial 
least squares regression (PLS-DA) with a default k-fold 
cross validation procedure was used to determine the 
differences between the groups.
 Perturbation testing of the model: The PLS-DA was 
cross-validated by a permutation analysis (200 times). 
All points should be at the right of the highest point, 
with the data separated between groups and clustered 
within groups. We calculated the R2 and Q2 values.
 The OPLS model was built following the same 
procedure to obtain good separation between different 
groups. The R2 and Q2 obtained after fitting indicated 
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LN-negative group and LN-positive (Figure 3) group 
were observed. A separation between the normal group 
and the PTC was shown in Figure 3A. The model 
parameters (R2 = 0.954, Q2 = 0.914) demonstrated a 
good quality of the obtained OPLS model. In the S-plot 
(Figure 3E), the variables far away from the center of 
the plot were assumed to have a greater contribution 
to the model separation. Whole blood metabolite 
expression patterns were observed in PTC patients and 
healthy controls, respectively. The pairwise PLS-DA 
between PTC patients and healthy controls revealed a 
clear separation with R2Y (cum) = 0.77, Q2 (cum) = 0.61 
and R2Y (cum) = 0.75, Q2 (cum) = 0.61, respectively 
(Figure 3).
 To identify the significantly distinguishing 
metabolites in discriminating between LN-negative 
and LN-positive PTC patients, further multivariate 
statistical analysis was performed. OPLS-DA was 

performed to separate the patients into two groups for 
each comparison. To the best of our knowledge, this is 
the first study to characterize the whole blood metabolic 
profile of PTC with or without LN, which is useful for 
identifying potential biomarkers and understanding the 
underlying molecular mechanism. However, the OPLS-
DA score plots did not separate the two groups clearly 
for all three comparisons. When the patients were 
classified into LN-negative and LN-positive, the OPLS-
DA score plot exhibited nonseparation between the two 
groups (Figure 3D).
 We first identified 48 metabolites according to 
their corresponding chemical shift and multiplicity. 
The altered metabolite level in the whole blood of 
PTC patients and healthy controls was characterized. 
Based on the statistical analysis of the results (p < 
0.05 and VIP > 1), 20 metabolites were identified as 
potential biomarkers for PTC and the color change for 

Figure 1. Representative whole blood 600 MHz 1H NMR spectra.

Figure 2. Metabolic profiling between the LN-negative PTC group, LN-positive PTC group and normal controls. A, principal component 
analysis (PCA) scores plot and B, O2PLS-DA scores plot.
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the key metabolites according to the VIP-parameter 
is shown in Figure 3E and Table 2. We also evaluated 
the significance of the altered metabolites level in the 
LN-negative and LN-positive groups as compared to 
healthy subjects (Table 2). Compared to the normal 
controls, the concentrations of tyrosine, lactate, lysine, 
acetic acid, arginine, glutamic acid, methionine, 
hydroxybutyric acid, aspartate, tyrosine, acetoacetate, 
threonine, histidine, hypoxanthine, and formate 
decreased in PTC patients, whereas the concentrations 
of isobutyric acid, proline, 1-methylhistidine, creatine, 
glucose, ornithine, and isopropyl alcohol increased.
 To evaluate the performance of each altered 

metabolite in distinguishing PTC from healthy subjects; 
we analyzed the diagnostic accuracy through receiver 
operating characteristic (ROC) curves analysis. The 
diagnostic accuracy in the form of the area under the 
ROC curve (AUC) was evaluated in the datasets of 
healthy vs. PTC, healthy vs. LN-negative, and healthy 
vs. LN-positive patients (Table 3). The metabolites 
were also used to construct an independent model, and 
we found that isobutyric acid, lactate, lysine, arginine, 
glutamic acid, methionine, proline, aspartate, tyrosine, 
creatine, glucose, threonine, ornithine, isopropyl 
alcohol, and formate performed with good diagnostic 
potential with AUC scores of more than 0.9 in all 

Figure 3. Metabolic profiling between the PTC and normal controls. A, B, C, and D are the orthogonal projection to latent structure 
discriminant analysis (OPLS-DA) scores plots between the PTC and normal controls, LN-negative and normal controls, LN-positive and normal 
controls, and LN-negative and LN-positive. E, F, G, and H are S-plots of the OPLS-DA model of the PTC and normal controls, LN-negative and 
normal controls, LN-positive and normal controls, and LN-negative and LN-positive, the variables that lie far away from the center of the plot 
were assumed to have a greater contribution to the model classification. I, J, K, and M are validation plots of the OPLS-DA model of the PTC 
and normal controls, LN-negative and normal controls, LN-positive and normal controls, and LN-negative and LN-positive using a permutation 
test that was randomly permuted 200 times. The explained variance (R2X) and predictivity (Q2Y) of the constructed model are indicated on the 
far right and remain higher than those of the 200 permuted models to the left.
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PTC patients compared with the healthy subjects. To 
clearly demonstrate these differences, scatter plots 
were constructed to illustrate the relative concentration 
(Figure 4). In the LN-negative and LN-positive 
subjects, the significance of all these metabolites were 
similarly found in PTC patients.

3.3. Metabolic pathway analysis

A pathway analysis provides useful information about 
the biological roles of metabolites, which can further 
provide insights into the pathogenesis and mechanisms 
of a specific disease. To further explore the metabolic 

Table 2. The differential metabolites among all papillary thyroid carcinoma (PTC) patients, LN-positive PTC patients, 
LN-negative PTC patients, and normal controls

Metabolites

Lactate
L-Lysine
Acetic acid
L-Arginine
L-Glutamic acid
Methionine
L-Proline
3-Hydroxybutyric acid
Aspartate
Tyrosine
1-Methylhistidine
Creatine
D-Glucose
L-Threonine
L-Ornithine
Isopropyl alcohol
L-Histidine
L-Phenylalanine
Hypoxanthine
Formate

Chemical shifta

(ppm, multiplicity)

 1.32 (d)
3.03 (t)
 3.11 (d)
3.25 (t)
 3.76 (q)
 3.38 (s)

  4.10 (m)
 1.22 (d)
 3.90 (q)
  4.42 (m)
  3.98 (m)
 3.93 (s)

  3.72 (m)
 1.30 (d)
3.81 (t)
 1.17 (d)
 7.09 (d)
 7.44 (d)
 8.23 (s)
 8.45 (s)

aMultiplicity: s singlet, d doublet, t triplet, q quartet, m multiplet. bVariable importance in the projection was obtained from OPLS model. cp-value 
obtained from Student's t-test. dFold change (FC) was calculated as a binary logarithm of the average mass response (normalized peak area) ratio 
between PTC versus normal controls, LN-positive versus normal controls or between LN-negative versus normal controls.

PTC vs. Normal

VIPb

  1.141
2.0087
1.3528

  1.602
1.8954
2.0955
1.0941
1.2645
2.0767
2.0821
1.1721
1.4811
2.0161
1.6894
1.5034
1.1943
1.5729
1.1865

  0.94239
2.0866

Pc

9.45E-08
9.50E-04
3.29E-03
1.12E-02
2.62E-25
3.07E-36
3.59E-07
1.84E-09
6.34E-35
2.70E-35
3.72E-08
2.98E-13
3.56E-31
3.08E-18
1.04E-13
1.87E-08
2.99E-15
2.39E-08
1.59E-05
1.32E-35

FCd

27.187
0.011598
0.40239
0.25497
0.19049
0.051506
9.7312
0.2245

0.091451
0.0077964

3.7893
2.5773
3.6886
0.38636
2.8769
3.2248
0.22942
0.30858
164.71

0.043805

LN-positive vs. Normal

VIPb

1.0958
1.8146
1.1992
1.5119
1.7676
1.9201
1.1348

  1.154
1.9829
1.8898
1.1772
1.5453
1.9788
1.7044
1.3843

  1.308
1.5081
1.0246
1.0839
1.9294

Pc

6.54E-06
5.45E-19
5.46E-07
1.81E-11
1.79E-17
3.33E-23
2.67E-06
1.69E-06
1.67E-26
7.46E-22
9.55E-07
4.28E-12
2.92E-26
1.11E-15
2.25E-09
2.60E-08
2.12E-11
2.96E-05
8.51E-06
1.21E-23

FCd

26.416
0.014733
0.43641
0.23638
0.2036

0.061593
10.215
0.22264
0.05952

0.0063454
3.5902
2.5713
3.8243
0.38161
2.7964
2.5971
0.2296
0.38102
163.11

0.032461

LN-negative vs. Normal

VIPb

1.4698
1.7784
1.3331
1.4474
1.7881
1.9079
1.2316
1.1268
1.8387

  1.837
1.3416
1.5156
1.9263
1.5688
1.3898
1.3666
1.5272
1.5358
1.0141
1.8646

Pc

6.48E-10
1.52E-16
5.40E-08
1.43E-09
7.82E-17
3.37E-21
8.19E-07
9.15E-06
1.74E-18
1.99E-18
4.21E-08
1.16E-10
4.92E-22
1.30E-11
9.70E-09
1.99E-08
7.33E-11
5.17E-11
8.43E-05
1.96E-19

FCd

28.14
0.0077247
0.36032
0.27797
0.17427
0.039035
9.1315
0.2268
0.13094

0.0095911
4.0355
2.5848
3.5207
0.39223
2.9764
4.0013
0.2292
0.219
166.52

0.057839

Table 3. The details of the ROC curves of all significantly altered metabolites in different groups

Metabolites

Lactate
L-Lysine
Acetic acid
L-Arginine
L-Glutamic acid
Methionine
L-Proline
3-Hydroxybutyric acid
Aspartate
Tyrosine
1-Methylhistidine
Creatine
D-Glucose
L-Threonine
L-Ornithine
Isopropyl alcohol
L-Histidine
L-Phenylalanine
Hypoxanthine
Formate

PTC vs. Normal

AUC

0.980 
0.982 
0.844 
0.954 
0.964 
0.974 
0.921 
0.869 
0.961 
0.973 
0.875 
0.904 
0.986 
0.938 
0.940 
0.935 
0.895 
0.889 
0.680 
0.980 

   95% CI

0.937-1.0
    0.953-0.999
    0.823-0.941
    0.893-0.991
    0.919-0.996

0.918-1.0
    0.841-0.978
    0.787-0.924
    0.913-0.996

  0.93-1.0
    0.798-0.942
    0.839-0.958

0.966-1.0
    0.868-0.988
    0.857-0.993
    0.853-0.984
    0.809-0.952
    0.823-0.941
  0.581-0.78
0.942-1.0

LN-negative vs. Normal

AUC

0.983 
0.985 
0.867 
0.951 
0.969 
0.976 
0.922 
0.876 
0.949 
0.970 
0.890 
0.911 
0.989 
0.925 
0.943 
0.945 
0.898 
0.926 
0.767 
0.975 

   95% CI 

0.939-1.0
0.958-1.0

    0.761-0.948
  0.887-0.99
0.923-1.0
0.925-1.0

    0.846-0.988
  0.795-0.95

    0.844-0.993
0.923-1.0

    0.794-0.959
    0.829-0.978

0.958-1.0
      0.83-0.988
    0.871-0.955
    0.872-0.997
    0.815-0.964
    0.864-0.987
    0.649-0.871

0.926-1.0

LN-positive vs. Normal

AUC

0.978 
0.979 
0.826 
0.957 
0.960 
0.972 
0.921 
0.862 
0.970 
0.975 
0.862 
0.899 
0.984 
0.949 
0.938 
0.926 
0.891 
0.858 
0.609 
0.984 

   95% CI

0.929-1.0
    0.945-0.999
    0.711-0.917
    0.901-0.995

0.908-1.0
0.913-1.0

    0.843-0.985
  0.784-0.94
0.921-1.0
0.937-1.0

    0.772-0.944
    0.813-0.979

0.955-1.0
      0.88-0.996
      0.85-0.996
    0.838-0.989
    0.806-0.954
    0.766-0.932
    0.488-0.733

0.956-1.0
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pathways that are involved in the regulation of PTC 
formation, the detected differential metabolites and 
their potential metabolic pathways were analyzed 
using KEGG graph software and the KEGG database. 
To explore metabolic pathway influences between 
the normal group and PTC group, pathway analysis 
performed by MetaboAnalyst 4.0, which combined 
results from powerful pathway enrichment analysis with 
the topology analysis.
 Metabolic pathway analysis revealed that over 31 
pathways were influenced (Table 4 and Figure 5). An 
impact value > 0.1 and a hit value > 2 were used as the 
threshold to identify the significantly altered metabolic 
pathways (21). Accordingly, seven potential target 
pathways were identified in whole blood samples, 
including arginine biosynthesis; histidine metabolism; 
arginine and proline metabolism; butanoate metabolism; 

Figure 4. Scatter plots illustrating discrimination among normal controls, LN-negative and LN-positive PTC patients. The Y axis represents 
the relative abundance of NMR signals (normalized to the total peaks). *p < 0.01 from the LN-positive PTC versus normal controls; #p < 0.01 from 
the LN-negative PTC versus normal controls.

Table 4. The results from pathway analysis using the software package KEGG graph

Pathway Name

Histidine metabolism
Arginine biosynthesis
Phenylalanine, tyrosine and tryptophan biosynthesis
Arginine and proline metabolism
Phenylalanine metabolism
Pyruvate metabolism
Alanine, aspartate and glutamate metabolism

Hits

4
4
2
5
2
2
2

P

3.3309E-5
1.8628E-5
9.3496E-4
8.0243E-5
0.006693
0.031315
0.048932

-log (p)

10.31
10.891
6.975
9.4304
5.0067
3.4637
3.0173

Holm p

0.0027313
0.0015461
0.074797
0.0064997
0.52875

1.0
1.0

FDR

9.3265E-4
7.8236E-4
0.015707
0.0016851
0.086182
0.23913
0.31618

Impact

0.22131
0.2538

1.0
0.34441
0.35714
0.14463
0.42068

Figure 5. The impact of metabolic pathways in PTC. 1, Histidine 
metabolism; 2, Arginine biosynthesis; 3, Phenylalanine, tyrosine 
and tryptophan biosynthesis; 4, Arginine and proline metabolism; 
5, Phenylalanine metabolism; 6, Pyruvate metabolism; 7, Alanine, 
aspartate and glutamate metabolism. The size and color of each circle 
is based on the pathway impact value and the p-value, respectively.
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phenylalanine, tyrosine and tryptophan biosynthesis; 
the synthesis and degradation of ketone bodies, 
phenylalanine metabolism; alanine, aspartate and 
glutamate metabolism; and tyrosine metabolism. The 
pathways details are displayed in Table 4.

4. Discussion

Currently, fine-needle aspiration (FNA) cytology has 
been used on a growing number of patients to determine 
the benign or malignant nature of their thyroid nodules 
and enlarged lymph nodes before surgery. The natures 
of some nodules and lymph nodes are indeterminate 
with FNAB alone. Once nodules and lymph nodes are 
identified as uncertain in nature, this will affect the most 
appropriate management strategy (22-24). After surgery, 
only approximately 80% of these thyroid nodules are 
malignant, which indicates that about 20% of patients 
with benign nodules were undergoing unnecessary 
thyroidectomy (25). The prediction of PTC, including 
the risk prediction of lymph node metastasis, is not 
only significant for guiding the indication of surgery to 
improve prognosis but also more significant for avoiding 
overtreatment and improving the quality of life.
 In the present study, we investigated and identified 
the metabolic characteristics of the whole blood 
samples from PTC patients and healthy controls using 
1H NMR-based metabolomics and multivariate pattern 
recognition analytical techniques for the first time. Our 
results revealed that the metabolic phenotype of PTC 
patients' blood was significantly different from that of 
healthy controls' blood. In detail, 20 metabolites were 
significantly altered in PTC patients compared with those 
in the healthy controls. The presence of LN in patients 
with PTC was also distinguished for the first time, 
where no clear associations was observed. Compared 
with the published reports of the metabolic profiling of 
PTC (26-29), we focused on the metabolite profiling of 
whole blood in investigations of human health and PTC 
patients. The identified metabolites may be the potential 
factors for the diagnosis and prognosis of PTC patients. 
They also were valuable in understanding the molecular 
mechanisms in the process of PTC.
 The identification of specific metabolites displaying 
altered levels of their associative metabolic pathways 
can improve the understanding of the biological and 
pathological aspects involved in the process from normal 
to an eventually cancerous state. Altered pathways 
include changes in arginine biosynthesis; histidine 
metabolism; arginine and proline metabolism; butanoate 
metabolism; phenylalanine, tyrosine and tryptophan 
biosynthesis; synthesis and degradation of ketone 
bodies, phenylalanine metabolism; alanine, aspartate and 
glutamate metabolism; and tyrosine metabolism.
 Growth of cancer cells is rapid and divided into short 
cycles, requiring a higher energy supply to complete 
more biosynthesis, which requires reprograming of 

biochemical pathways to alter the metabolism of the 
cells. These alterations include increased glucose and 
glutamine uptake, lactate production, and abnormal 
biosynthesis of nucleic acids, proteins, and lipids (30). 
Deja et al. found that metabolic differences not only 
between thyroid cancer and normal tissues but also 
between different types of thyroid lesions, reflected 
the sensitivity of the metabolomic fluctuations. They 
concluded that the metabolic changes in thyroid 
carcinoma are mainly related to osmotic regulators, 
citrate, and amino acids that provide produce the TCA 
cycle (31).
 In the present study, a decreased glucose level and 
increased lactate level in the LN-negative and LN-
positive PTC groups compared to those in the healthy 
control group indicated that the energy supply pattern 
shifted from aerobic to anaerobic metabolism (Figure 
4) (26,29). Creatine, phosphocreatine, and creatinine, 
through the creatine kinase reaction, played important 
roles in maintaining a constant ATP level (32). During 
arginine and proline metabolism, phosphocreatine and 
creatinine are the breakdown products of creatine, which 
reacts with ATP under the catalysis of creatine kinase 
(33).
 In our results, the increased level of creatine in the 
PTC group suggested a disruption of their conversion 
to ATP, which may then cause an ATP depletion, and 
consequently may block the supply of energy in PTC 
patients. Aspartate, asparagine, glutamine, and glutamate 
are all involved in the alanine, aspartate, and glutamate 
metabolism. The decreased levels of glutamate and 
aspartate in PTC patients suggested that the generation 
from glutamine to glutamate was obstructed. The 
decrease in glutamate led to the distribution of the TCA 
cycle and the formation of glutathione.
 The results of metabolomic studies are more 
contrasting regarding amino acids (34). Among the 
biomarkers identified, amino acids, such as glutamine, 
lysine, valine, and arginine were inversely associated 
with hepatocellular and prostate cancer risk in some 
prospective metabolomic studies (35-38). Li et al. 
analyzed normal thyroid and matched tumor tissues 
obtained from 16 patients and concluded that the 
metabolic components of PTC are characterized by 
increased glycolysis and inhibition of the tricarboxylic 
acid cycle, and an abnormal metabolism of carcinogenic 
amino acids, choline, and lipids (39).
 In a similar study, Miccoli et al. studied 72 patients 
who underwent total thyroidectomy. They found that the 
thyroid tumor sample spectra had higher levels of lactate 
and acetylcholine, and lower levels of lipids and alanine 
than the normal sample (40). Our study showed that 
amino acid differences were mainly reflected in tyrosine, 
lysine, arginine, glutamic acid, methionine, aspartate, 
tyrosine, threonine, ornithine, and histidine. Future 
studies should focus on amino acid metabolisms, and on 
elucidating the mechanisms underlying the process of 
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LN of PTC before the clinical application of the FNA.
 The prediction of PTC is not only significant for 
guiding the indication of surgery to improve prognosis 
but also for avoiding overtreatment and improving the 
quality of life. Metabolomics has the potential to change 
our existing understanding of the molecules involved 
in thyroid carcinoma, thus becoming a new diagnostic 
approach, providing metabonomic support for the 
preoperative evaluation of the nature of thyroid nodules, 
such as FNAB. Metabolomics can also improve our 
understanding of the process of cancer development and 
novel biomarkers. In the future, we hope to have more 
samples and more accurate metabonomic studies for the 
lymph node metastasis of papillary thyroid carcinoma, to 
realize the auxiliary judgment for the presence or absence 
of lymph node metastasis through the quantification of 
metabolites and metabolic pathways.
 In conclusion, we were able to distinguish PTC 
patients from healthy controls with a high level of 
accuracy based on principal component analysis and 
linear discriminant analysis of the 1H NMR metabolomic 
data obtained from whole blood samples. We first 
investigated the metabolic profiles between the LN-
negative and LN-positive cancer subjects. No metabolite 
was found that could discriminate the presence of LN 
metastasis. The metabolic information obtained by 
1H NMR might play a significant role in screening 
biomarkers and in the early diagnosis of PTC cancer. 
Further studies with larger sample sizes are needed to 
elucidate significant metabolites to indicate the presence 
of LN metastasis in patients with PTC.
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