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1. Introduction

Human pathogenic fungi such as Candida albicans, 
Candida glabrata, and Cryptococcus neoformans cause 
superficial infections in the skin and oral cavity as well 
as deep infections in organs such as the lung and brain. 
Immunocompromised patients, such as those with 
AIDS and cancer, are especially susceptible to lethal 
fungal infection (1-4). Because fungi are eukaryotes, 
limited numbers of antifungal drugs are available and 
thus novel antifungal drugs are desired. To develop 
new antifungal drugs, it is important to understand the 
molecular mechanisms of fungal infectious processes 
using an animal infection model and to identify new drug 
targets. Many mammalian pathogens including fungi 
are assumed to detect an increase in the environmental 

temperature as information regarding the host 
environment (5). At 37°C, the human body temperature, 
C. albicans modulates its nucleosome structure with 
temperature-induced transcription factors to accomplish 
physiologic alterations that enhance virulence, such 
as hyphae formation (6,7). To clarify the significance 
of such temperature-dependent processes for fungal 
infectious processes, it is essential to utilize animal 
infection models at both low and high temperatures. 
 Animal models of infection that can withstand 
both low and high temperatures, however, are scarce. 
Mammals such as mice and rabbits have been used to 
evaluate fungal virulence properties in various organs, 
including the skin (8), lung (9), stomach (10), oral cavity 
(11), urethral tube (12), and vagina (13). Mammals are 
homeothermic animals, however, and cannot be used to 
evaluate fungal virulence at low temperatures. Many non-
mammalian animals have been used as animal models 
of fungal infection to overcome the ethical and cost-
related issues associated with mammalian model animals 
(14,15); a vertebrate model such as zebra fish (16), and 
invertebrate models such as nematode (Caenorhabditis 
elegans) (17), fruit fly (Drosophila melanogaster) 
(18), silkworm (Bombyx mori) (19,20), and the greater 
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wax moth larva (Galleria mellonella) (21,22). The 
heterothermic characteristics of zebra fish were used 
to evaluate fungal virulence at a high temperature of 
33°C (23,24). The applicability of this model at 37°C, 
however, is not known. The nematode C. elegans and 
the fruit fly D. melanogaster cannot survive at 37°C. 
Silkworms and the greater wax moth larva can be used 
as animal infection models at 37°C (25-27), but their 
infection sensitivities to fungi are drastically increased 
at 37°C compared to that at a lower temperature (19,28-
31). The increased infection sensitivity of these insects at 
37°C is considered to be due to damage to the immune 
system at a high temperature (32-34). 
 We focused on the two-spotted cricket, Gryllus 
bimaculatus, an Orthopteran insect that is distributed 
across tropical and subtropical regions in the world, to 
investigate the effects of temperature on the infectious 
processes of human pathogens. The two-spotted cricket 
develops from nymph to adult at a wide range of 
temperatures, from 19°C to 37°C (35,36). We previously 
reported that the two-spotted cricket is infected 
and killed by human pathogenic bacteria, including 
Staphylococcus aureus, Pseudomonas aeruginosa, 
and Listeria monocytogenes (37). The infection 
sensitivity of the two-spotted cricket to S. aureus and P. 
aeruginosa does not differ between 27°C and 37°C, but 
the infection sensitivity to L. monocytogenes is higher 
at 37°C than at 27°C (37). Thus, the two-spotted cricket 
does not generally increase the infection sensitivity to 
pathogens at 37°C, and is an animal infection model 
that can be used to evaluate the effect of temperature 
on infectious processes without perturbing host system 
to identify the temperature-dependent virulence 
mechanisms of specific pathogens. In addition, the two-
spotted cricket is available at a low price throughout 
the world, because crickets are cultured as food for 
amphibians and reptiles. The body size of the cricket is 
appropriate for injecting accurate amounts of samples 
and to quantitatively evaluate the virulence properties of 
pathogens by determining the median lethal dose (LD50) 
value (37). In this study, we examined the virulence 
properties of human pathogenic fungi, including C. 
albicans, C. glabrata, and C. neoformans, using the 
cricket infection model at 27°C and 37°C. The findings 
revealed that the two-spotted cricket can be used as an 
animal infection model of human pathogenic fungi, 
and that C. albicans and C. glabrata exhibit increased 
killing abilities against crickets at a high temperature.

2. Materials and Methods

2.1. Crickets

Two-spotted crickets in the final nymph stage were 
purchased from Tsukiyono Farm (Tone-gun, Gunma, 
Japan) and raised to adults by feeding them water and 
food at 27°C, as previously reported (38,39). Briefly, 

100 crickets were kept in a plastic cage (W320 × L170 
× H210) with food 'Koorogi-food' (Tsukiyono-Farm), 
wet paper towel, and paper egg trays. Adult crickets 
within 1 week after eclosion were used for the infection 
experiments.

2.2. Fungal strains and culture conditions

Fungal strains, including C. albicans, C. glabrata, 
C. neoformans, and the gene-knockout strains of C. 
neoformans, which were stocked at -80˚C, were streaked 
on YPD agar plates and cultured overnight at 30°C. A 
single colony of each strain was inoculated into 30 ml 
of YPD liquid medium in a 225-mL conical tube (cat. 
no. 352075, BD Falcon, Bedford, MA) and aerobically 
cultured overnight by shaking at 150 rpm (BR-3000LF, 
TAITEC co., ltd., Koshigaya, Saitama, Japan) at 30°C. 
The details of the fungal strains used in this study are 
listed in Table 1.

2.3. Infection experiments using crickets

Overnight fungal cultures were centrifuged at 5,000 
g for 6 min and the precipitated cells were suspended 
in saline. The fungal cell solution was serially diluted 
with saline. Crickets were injected with 50 µL of fungal 
solution via an intra-hemolymph route from the ventral 
abdominal region using a 1-mL syringe equipped 
with a 30 gauge-needle, as previously reported (37). 
The injected crickets (n = 5/group) were maintained 
in a disposable cylindrical dish (Φ129 × H97 mm, 
MINERON KASEI Co., Ltd., Higashi-Osaka, Osaka, 
Japan) with food and wet Kimwipes (NIPPON PAPER 
CRECIA Co., Ltd., Chiyoda-ku, Tokyo, Japan) in 
dark conditions at 27°C or 37°C. Cricket survival was 
monitored after the injection. The fungal solution used 
for the infection experiment was 105-fold diluted with 
saline, spread onto YPD agar plates, and incubated 
overnight at 30°C. The appearing colonies were counted 
and the number of live fungal cells injected into the 
crickets was calculated. The LD50 values of fungal 
strains against the crickets were determined by logistic 
regression from the dose-survival plots. All the survival 
data are listed in Table S1 (http://www.ddtjournal.com/
action/getSupplementalData.php?ID=16).
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Table 1. Fungal strains used in this study
Strain

Candida albicans
    ATCC10231
Candida glabrata
    CBS138
Cryptococcus neoformans
    H99
    Δcna
    Δgpa1
    Δpka1

Ref.

(56)

(57)

(58)
(43)
(45)
(47)

Genotypes and Characteristics

Serotype A

ATCC2001

Serotype A, clinical isolate
H99, cna1::ade2, matα
H99, gpa1:: ade2, matα
H99, pka1:: ade2, matα
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diluted with saline. The doubling time was calculated 
from the exponential growth phase by linear regression, 
as previously reported (40,41).

2.6. Statistical analysis

Cricket survival at different fungal doses were plotted 
on an X-Y graph and the dose-response survival curves 
were determined by logistic regression. To compare the 
two dose-survival curves, a likelihood ratio test was 
performed using R ver. 3.2.3 (42). The LD50 value and 
the standard error were determined using 'Mass' in R.

3. Results

3.1.Cricket killing by human pathogenic fungi

To determine whether human pathogenic fungi kill 
the two-spotted crickets, we injected C. albicans, C. 
glabrata, and C. neoformans into crickets via the intra-
hemolymph route and maintained the crickets at 27°C or 
37°C. At both temperatures, a high number of C. albicans 
cells killed crickets within 18 h after the injection, 
whereas a low number of C. albicans cells killed crickets 
40 h after injection (Figure 1A). A similar tendency was 

2.4. Preparation of heat-killed fungal cells

Overnight fungal cultures were centrifuged at 5,000 g 
for 6 min, and the precipitated cells were suspended in 1 
mL of saline and transferred to a 2-mL Eppendorf tube. 
A small part of the fungal solution was 105-fold diluted 
with saline, spread onto YPD agar plates, and incubated 
overnight at 30°C to measure the number of fungal 
cells. The fungal solution in a 2-mL Eppendorf tube 
was autoclaved at 121°C for 20 min, serially diluted 
with saline, and used for the infection experiments. 

2.5. Measurement of fungal doubling time

Single colonies of C. albicans, C. glabrata, or C. 
neoformans were inoculated into 10 mL of YPD liquid 
medium in a 50-mL conical tube (Cat. No. 352070, BD-
Falcon) and aerobically cultured overnight at 30°C by 
shaking at 150 rpm. A 100-µL aliquot of the overnight 
culture was inoculated into 10 mL of YPD liquid medium 
in a 50-mL conical tube and aerobically cultured by 
shaking at 150 rpm at 27°C or 37°C. The OD600 values 
were measured over time using a spectrophotometer 
(UV-1280, SHIMADZU Co., Kyoto, Japan). To measure 
the condensed cell culture, the culture was appropriately 

Figure 1. Killing of crickets after injecting human pathogenic fungi. Crickets (n = 5/group) were injected with saline or various 
doses of C. albicans (A), C. glabrata (B), or C. neoformans (C), and were maintained at 27°C or 37°C. The time-course of cricket 
survival was monitored.
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observed in the injection of C. glabrata cells (Figure 1B). 
C. neoformans killed crickets 43 h after injection (Figure 
1C). In all experiments, injection of saline did not kill the 
crickets (Figures 1A-1C). These results suggest that C. 
albicans, C. glabrata, and C. neoformans kill crickets. 

3.2. Comparison of cricket killing ability by fungi 
between 27°C and 37°C 

Because the two-spotted cricket does not universally 
increase infection sensitivity to pathogens (37), the two-
spotted cricket is useful for evaluating the temperature 
effect on the infection properties of pathogens. We 
examined whether C. albicans, C. glabrata, and C. 
neoformans increase their killing activities against 
crickets at a higher temperature. Crickets were injected 
with fungi, maintained at 27°C or 37°C, and survival 
was measured. The dose-response survival curve of C. 
albicans differed between 27°C and 37°C (Figure 2A), 
and the LD50 value at 37°C was less than one-fifth that at 

27°C (Figure 2B). The dose-response survival curve of C. 
glabrata was different between 27°C and 37°C (Figure 
2A), and the LD50 value at 37°C was less than one-fifth 
that at 27°C (Figure 2B). In contrast, the dose-response 
survival curve of C. neoformans did not differ between 
27°C and 37°C (Figure 2A). These results suggest that 
C. albicans and C. glabrata have increased killing ability 
against crickets at 37°C compared to 27°C. 

3.3. Comparison of fungal growth between 27°C and 
37°C

We hypothesized that one reason for the increased 
virulence of C. albicans and C. glabrata at a high 
temperature is an increased growth rate at high 
temperature. To address this point, we measured the 
growth curves of C. albicans, C. glabrata, and C. 
neoformans at 27°C and 37°C, and determined the 
doubling times. All fungal strains showed logarithmic 
growth from 2 h to 6 h after inoculation (Figure 3). The 

Figure 2. Effect of temperature on cricket sensitivity against fungal infection. (A) The dose-response survival curve of crickets 
injected with C. albicans, C. glabrata, or C. neoformans was examined at 27°C or 37°C. Serial dilutions of the fungal solution were 
injected into crickets (n = 5/dose) and survival was monitored at 24 h (C. albicans and C. glabrata) or 48 h (C. neoformans) after 
the injection. Results from independent experiments (C. albicans [27°C], three times; C. albicans [37°C], two times; C. glabrata 
[27°C], three times; C. glabrata [37°C], three times; C. neoformans [27°C], three times; C. neoformans [37°C], two times) were 
pooled and the survival curve was determined by logistic regression. The p-values determined by using likelihood ratio tests 
between the survival curves at 27°C and 37°C are presented in the graphs. All survival data are presented in Table S1 (Supporting 
Information) and no crickets injected with saline died in any of the experiments. (B) The LD50 values of C. albicans, C. glabrata, or C. 
neoformans at 27°C or 37°C were determined by logistic regression in (A). Error bars indicate standard errors.

Figure 3. Effect of temperature on fungal growth curve. Overnight cultures of C. albicans, C. glabrata, or C. neoformans were 
inoculated into 100-fold amounts of fresh YPD medium and aerobically cultured at 27°C or 37°C. OD600 was measured during the 
time-course.
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doubling times of C. albicans and C. glabrata were 
shorter at 37°C than at 27°C (Table 2). In contrast, the 
doubling time of C. neoformans was not shorter at 37°C 
than at 27°C (Table 2). These results suggest that the 
growth rates of C. albicans and C. glabrata increase at 
37°C compared to at 27°C. 

3.4. Killing activity of heat-killed fungal cells against 
crickets

To address whether the cricket killing ability by fungi 
is caused by live fungal cells, we examined the killing 
activities of heat-killed fungal cells against crickets. C. 
albicans, C. glabrata, and C. neoformans cells were 
autoclaved and injected into crickets. In all fungal 
species, the dose-response survival curve was different 
between the live fungal cells and the heat-killed fungal 
cells (Figure 4A). The LD50 value of heat-killed fungal 
cells was higher than 5-fold that of live fungal cells in 

each species (Figure 4B). These results suggest that live 
fungal cells have higher killing activity against crickets 
than dead fungal cells.

3.5. Killing activities of C. neoformans gene-knockout 
strains against crickets

To determine the applicability of the cricket model for 
evaluation of fungal virulence factors, we examined 
whether the C. neoformans gene-knockout strains of 
cna1, gpa1, and pka1, which are virulence factors in 
mammals, exhibit decreased killing activities against 
crickets. cna1 encodes a subunit of calcineurin, a protein 
phosphatase involved in the signaling pathway (43,44). 
gpa1 and pka1 are involved in capsule formation and 
melanin synthesis via a calcineurin-independent pathway 
(45-47). Crickets were injected with the gene-knockout 
strains and the dose-response survival curve at 37°C 
was determined. The survival curve differed between 
the parent strain and the respective gene-knockout strain 
(Figure 5A). The LD50 values of the cna1-, gpa1-, and 
pka1-knockout strains were higher than 2-fold that of the 
parent strains (Figure 5B). These results suggest that the 
cricket-fungus infection model is effective for evaluating 
fungal virulence factors.

4. Discussion

This study revealed that human pathogenic fungi, 

Table 2. Doubling times of fungal strains

Temperature

27°C
37°C
P value

C. glabrata

  1.34 ± 0.16
0.802 ± 0.020
     0.0259

C. albicans

1.56 ± 0.09
1.05 ± 0.04
    0.0099

Doubling time (h) was calculated from fungal growth curves at 27°C 
or 37°C. Data are the means ± standard errors from three independent 
experiments. Student's t-test p values between 27°C and 37°C are 
presented.

C. neoformans

  1.80 ± 0.04
  2.16 ± 0.22
     0.0776

Figure 4. Killing effects of heat-killed fungal cells against crickets. (A) The dose-response survival curve of crickets injected with 
heat-killed cells of C. albicans, C. glabrata, or C. neoformans was examined at 37°C. Serial dilutions of heat-killed fungal solutions 
were injected into crickets (n = 5/dose) and survival was monitored at 24 h (C. albicans and C. glabrata) or 48 h (C. neoformans) 
after the injection. Results from three independent experiments were pooled and the survival curve was determined by logistic 
regression. Results of live fungal cells (closed symbols and red line) are the same as in Figure 2A. The p-values determined by using 
likelihood ratio tests between the survival curves of dead fungal cells and of live fungal cells are presented in the graphs. All survival 
data are presented in Table S1 (Supporting Information), and no crickets injected with saline died in any of the experiments. (B) The 
LD50 values of heat-killed fungal cells were determined by logistic regression in (A). The LD50 values of live fungal cells were the 
same as those in Figure 2B. Error bars indicate standard errors.
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including C. albicans, C. glabrata, and C. neoformans, 
kill the two-spotted cricket. The killing activity of the 
fungi was drastically decreased by heat inactivation 
of the fungal cells, indicating that live fungal cells 
contribute to kill crickets. Furthermore, we evaluated 
fungal virulence against crickets at both 27°C and 37°C, 
and revealed that the killing activities of C. albicans and 
C. glabrata were increased at 37°C compared to that at 
27°C, but the killing activity of C. neoformans was not 
different between the two temperatures. This study also 
demonstrated that the C. neoformans gene-knockout 
strains of virulence factors attenuated the killing activities 
against crickets. Based on these results, we propose that 
the two-spotted cricket is a useful animal infection model 
of human pathogenic fungi, and is effective for clarifying 
the temperature-dependent virulence system of fungal 
pathogens. 
 To our knowledge, this study is the first to reveal 
that C. albicans and C. glabrata exhibit a temperature-
dependent increase in killing activity against animals. 
This finding was obtained because we utilized the two-
spotted cricket, a heterothermic animal, which can grow 
at both 27°C and 37°C. We found that the growth rate 
of these two fungi increases at 37°C, compared to that 
at 27°C, and assumed it to be a possible reason for the 
increased killing activities at 37°C. In addition to the 
growth rate, increasing the temperature leads to many 
physiologic alterations of fungi. C. albicans forms hyphae 
at high temperature, and a gene-knockout strain that 
is unable to form hyphae exhibits attenuated virulence 

(48,49). C. glabrata alters cell surface polysaccharides 
and shows different cell surface hydrophobicity at 
37°C compared to that at a lower temperature (50,51). 
C. neoformans upregulates nucleotide metabolism and 
capsule formation at a high temperature, enabling growth 
at a high temperature (52,53). Because C. neoformans 
did not exhibit increased killing activity against crickets 
at 37°C, the physiologic alteration that is present in the 
two Candida species but is absent in C. neoformans may 
contribute to the temperature-dependent killing activity 
against crickets. These points should be investigated in 
future studies by evaluating the virulence properties of 
fungal genetic mutants for each physiologic process in 
the cricket infection model to clarify the temperature-
dependent virulence system of these fungi. 
 Heat-killed fungal cells showed killing activity 
against crickets, although the killing activity of the 
heat-killed fungal cells was drastically lower than that 
of live fungal cells. It is plausible that live fungal cells 
proliferate in the cricket body and the proliferated 
fungal cells kill crickets in the same manner as the heat-
killed cells. In silkworms, β-glucan, a component of 
the fungal cell wall, excessively activates the humoral 
immune system, which kills silkworms (54,55). To 
optimize the utility of the two-spotted cricket as an 
animal infection model of human pathogenic fungi, 
further studies are needed to investigate the immune 
response of crickets against fungal cells and to reveal 
the molecular mechanism underlying infection-induced 
death in crickets.

Figure 5. Evaluation of C. neoformans virulence factors in the cricket infection model. (A) The dose-response survival curves of 
crickets (n = 5/dose) injected with C. neoformans gene knockout strains of cna1, gpa1, and pka1 were determined at 37°C. Survival 
was monitored at 48 h after fungal injection. Results from two independent experiments were pooled and the survival curve was 
determined by logistic regression. All survival data are presented in Table S1 (Supporting Information) and no crickets injected with 
saline died in any of the experiments. The p-values determined using likelihood ratio tests between the parent strain and the gene-
knockout strain are presented in the graphs. The survival curve of crickets infected with the parent strain of C. neoformans was the 
same as in Figure 2A (C. neoformans, 37°C). (B) The LD50 values of C. neoformans gene knockout strains of cna1, gpa1, and pka1 
were determined by logistic regression in (A) and compared with the parent strain. The LD50 value of the parent strain was the same 
as that in Figure 2B (C. neoformans, 37°C). Error bars indicate standard errors.
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