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ABSTRACT: As a result of recent advances in 
microfabrication technology (MFT), microparticles 
including microcapsules and microspheres can be 
prepared individually and the disadvantages of the 
conventional microparticles produced by batch 
production, i.e. (i) low loading efficiency, (ii) large 
size variation, and (iii) initial burst release, have been 
remedied. In addition, all conventional microparticles 
have the same structure, a spherical shape, so they 
have only one function, sustained release. Three-
layer microcapsules (TLMCs) have been designed 
to address these issues. TLMCs consist of a surface 
layer, a drug carrying layer, and a basement layer. 
TLMCs have sustained release as well as adhesiveness 
and targeting functions. TLMCs are prepared using 
ink-jet printer nozzle technology. The obtained 
TLMCs are used for the oral delivery of peptide/
protein drugs and long-term sustained-release 
injection preparation. In addition, self-dissolving 
micropiles (SDMPs) can be individually produced 
by MFT as a percutaneous preparation. MFT allows 
biopharmaceutical drugs like insulin, erythropoietin, 
and growth hormone to be absorbed through the 
skin. Thus, advances in MFT have accelerated the 
development of pharmaceutical technology.
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1. Introduction

Many scientists are interested in nanotechnology, 
and governments are supporting scientific research 
on nanotechnologies. In the field of pharmaceutics, 
nanotechnology is an attractive technology, and 
research  on nanocarr iers  l ike  l iposomes and 
nanospheres has been widely performed (1-3). 

Nanospheres are a form of nanoparticles. However, 
nanospheres differ from nanocapsules as shown in 
Figure 1. As microcapsules, nanocapsules have a capsule 
structure. Preparing nanocapsules is very difficult 
and they are 1-2 orders smaller in size. Therefore, 
nanocapsules are not popular in pharmaceutics. 
Nanoparticles are fabricated by the same method as 
used for microparticles, i.e. they are produced by a 
batch system as shown in the figure. Batch systems 
have a long history; conventional methods of preparing 
microcapsules and microspheres are classified into 
two categories: dispersion of preformed polymers 
and polymerization of monomers. In addition, 
dispersion is further classified into three methods: (i) 
emulsion solvent extraction/evaporation, (ii) phase 
separation (coacervation), and (iii) spray-drying. 
Scientists have developed many modified methods 
to remedy the disadvantages of the three methods, 
i.e. low drug-loading efficiency and wide variation in 
particle size. Many scientists have struggled for three 
decades to resolve the problem of low drug-loading 
efficiency. In addition, conventional microparticles 
have only one function, controlled-release, due to 
their spherical shape. However, the batch production 
method has failed to provide clues to resolving these 
problems. With the advance of microfabrication 
technology, in contrast, microparticles including 
microcapsules and microspheres can be prepared 
individually. When microfabrication technology is 
used to produce microcapsules, microcapsules can 
be produced individually. In such instances, a high 
drug loading efficiency (100% theoretically) can be 
attained with microparticles of almost the same shape 
and size. Therefore, pharmaceutical technology is 
enjoying a renaissance. This review studies advances 
in microfabrication technology in pharmaceutics and 
describes the outcomes of microfabrication technology 
resulting from research by the author.

2. Oral preparation

The main purpose of oral  micropart icles,  i .e . 
microcapsules  and  microspheres ,  i s  for  ora l 
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sustained-release preparat ion.  Both chemical 
and natural polymers are used as a wall-forming 
material. Cellulose and cellulose derivatives such 
as hydroxypropylmethyl cellulose (HPMC), ethyl 
cellulose (EC), cellulose acetate (CA), cellulose acetate 
trimellitate (CAT), cellulose acetate butyrate (CAB), 
cellulose acetate phthalate, cellulose acetate propionate, 
hydroxypropylmethyl cellulose phthalate (HPMCP), 
hydroxypropylmethyl cellulose acetate succinate 
(HPMCAS), carboxymethyl cellulose (CMC), methyl 
cellulose (MC), sodium cellulose sulfate, and sodium 
carboxymethyl cellulose are used as chemical materials. 
Natural polymers that are used as a wall-forming 
material include chitosan, gelatin, and alginate.
 The polymerization method has not been used for 
oral pharmaceutical preparations because of the safety 
problem of the polymers obtained. In pharmaceuticals, 
the safety problem is crucial. When the polymerization 
method is used, polymerized substances with different 
degrees of polymerization are formed. If safety studies 
are performed with each polymerized substance, the 

production cost of the microparticles will increase 
tremendously. Therefore, the dispersion method is 
generally used.
 Using these polymers as wall-forming materials, 
microcapsules and microspheres were prepared by 
both of the methods mentioned above. However, each 
method has both advantages and disadvantages. 
 The coacervation method can be performed under 
room temperature. However, a coacervating agent 
is needed. Therefore, the coacervation method often 
suffers from residual solvents and coacervating agents 
detected in the final microcapsules. In addition, each 
polymer requires its own coacervating agent, so there is 
no universal rule for the combination of a wall-forming 
polymer material and coacervating agent.
 The solvent extraction/evaporation method has been 
widely used in pharmaceutics to prepare microcapsules. 
This requires the evaporation of the solvent by 
increasing the temperature during the preparation 
process. Therefore, the possibility of degradation 
increases when drugs that are susceptible to heating, 

Figure 1. Conventional micro- and nano-particles prepared by batch production method.
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 In the last two decades, research focused on the 
wall-forming material, and natural polymers like 
sodium alginate were introduced in microcapsules 
and microspheres. Reports mentioned, for example, 
dic lofenac sodium microspheres  prepared by 
emuls i f icat ion (46 ) ,  L- lacta te  dehydrogenase 
microparticles prepared by spray-drying (47), and 
indomethacin microspheres prepared by precipitation 
(48 ) .  Egg  a lbumin  mic rospheres  con ta in ing 
nitrofurantoin were prepared by phase separation 
(49). In addition, chitosan was used as a wall-forming 
material and ketoprofen was used as the core drug 
for preparation by emulsification/solvent evaporation 
(50). In addition, melatonin was loaded onto chitosan 
microcapsules by ionotropic gelation (51). Chitosan 
microspheres and nanoparticles were applied to insulin 
(52,53). The review by Kas provides useful information 
on microparticles made of chitosan (54). The purpose 
of those microparticles was to provide oral sustained-
release preparations. On the other hand, mucoadhesive 
chitosan microspheres were prepared by spray-drying, 
and the interaction between the obtained microspheres 
and rat small intestinal mucosal tissue was investigated 
(55 ) .  In  addi t ion,  chi tosan microspheres  and 

like biopharmaceuticals including peptide/protein 
drugs, are used as the active pharmaceutical ingredients 
(API). In addition, the microcapsules obtained have a 
substantial variation in size. The review by Freitas et al. 
provides useful information on microencapsulation by 
the solvent evaporation/extraction method (4).
 T h e  s p r a y - d r y i n g  m e t h o d  i s  s i m p l e  a n d 
microspheres are easily obtained. This method 
cannot produce authentic microcapsules. However, 
microspheres can be converted to microcapsules by 
modifying the surface of the microspheres during the 
formation process. The disadvantage of this method is 
the difficulty in limiting the size of microspheres. Li et 
al. adequately described the conventional large-scale 
production of these microparticles by spray-drying 
method (5).
 Table 1 summarizes the research on microparticles, 
indicating the core substance, API, wall-forming 
mate r i a l ,  and  method  o f  p repara t ion .  These 
microparticles were prepared with either of the 
aforementioned methods or a modified form of one of 
those methods. In all cases, the obtained microparticles 
are spherical and have only one function, sustained-
release of the formulated API.

Table 1. Microcapsules and microspheres as oral sustained-release preparation

CA, cellulose acetate; CAB, cellulose acetate butyrate; CAP, cellulose acetate phthalate; CAT, cellulose acetate trimellitate; CMC, 
carboxymethylcellulose; CMEC, carboxymethylethylcellulose; EC, ethylcellulose; HPC, hydroxypropylcellulose; HPMC, hydroxypropylmethylc
ellulose; HPMCP, hydroxypropylmethylcellulose phthalate; MC, microcapsules; MP, microparticles; MS, microspheres; NS, nanospheres; PHBV, 
poly(3-hydroxybutyrate-co-3-hydroxyvalerate); PMMA, polymethyl methacrylate; PVA, poly(vinyl alcohol).

Drug   Wall-forming material            Method   Reference

Acetylsalicylic acid Eudragit  RS                     MS  solvent evaporation            (6,7)
   CMEC                     MC  neutralization reaction              (8)
   Eudragit RS                    MS  solvent partition              (9)
Allopurinol  EC                     MC  solvent evaporation            (10)
Bacampicillin  Eudragit E                     MS  solvent evaporation            (11)
Bitolterol   EC                     MC  phase separation            (12)
Chlorothiazide  whey protein                    MC  cross-link             (13)
Dexamethasone  Eudragit S100                    NS  spray-dry             (14)
Diclofenac Na  CAB, PVA                     MS  solvent evaporation            (15)
   CMC                     MS  crosslink  　　           (16)
Fenoterol   EC                     MS  solvent evaporation             (17)
5-fl uorouracil  EC                     MS  solvent evaporation            (18)
Furosemide  EC                     MS  spherical crystallization           (19)
Ibuprofen   EC                     MS  solvent evaporation            (20)
   CAB                     MS  solvent evaporation            (21)
   PHBV                     MC  solvent evaporation             (22)
   Eudragit RS                     MS  emulsion solvent diffusion           (23)
Indomethacin  EC, Eudragit RL                    MS  solvent evaporation       (24,25)
   Polyesters                     NS  spray-dry             (26)
Isosorbide dinitrate  EC/HPC                     MC  oil-in-oil emulsion evaporation           (27)
Ketoprofen  CAT, EC                     MS  spray dry             (28)
   CAB, HPMCP                    MS  spray-dry             (29)
   Eudragit RS                    MS  coacervation/spray-dry           (30)
Nifedipine   cetearyl alcohol/poloxamer                   MP  hot air coating            (31)
Nitrofurantoin  CMC                     MC  coacervation                                       (32,33)
Pantoprazole  Eudragit S100/HPMC                    MP  spray-dry             (34)
Piroxicam   Hyaluronate                     MS  spray-dry             (35)
Propranolol HCl  CAB                     MC  emulsion non-solvent addition method   (36)
Quercetin   PMMA                     MC  solvent evaporation            (37)
Sulfamethoxazole  CAP                     MC  spray-dry             (38)
Theophylline   HPMC                      MO  spray-drying        (39,40) 
   CMC-Na, HPMC                    MC  spray-drying            (41)
   EC                     MC  emulsion non-solvent addition           (42)
   Polyglycerol esters of fatty acids                   MS  spray-chilling             (43)
   Eudragit RL, Eudragit RS                   MC  phase separation             (44)
Verapamil HCl  CA, cellulose acetate propionate, CAB          MS  emulsion-solvent evaporation           (45)
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nanoparticles were prepared for the colon delivery of 
prednisolone (56) and oral delivery of protein (57). 
Pargaonkar et al. (58) used a new method, electrostatic 
layer-by-layer (LbL) self-assembling, to make core-
shell structures for encapsulation of dexamethasone 
microcrystals with a polyelectrolyte shell. The LbL 
self-assembly process was used to encapsulate 
dexamethasone particles with up to five double layers 
formed by alternating the adsorption of positively 
charged poly(dimethyldiallyl ammonium chloride), 
negatively charged sodium poly(styrenesulfonate), 
and, depending on the pH, positively or negatively 
charged gelatins of type A (acid pretreated/porcine 
gelatin) or type B (alkali processed/bovine gelatin) onto 
the surface of the negatively charged dexamethasone 
particles. Direct surface modification of dexamethasone 
microcrys ta l s  v ia  the  LbL process  produced 
monodispersed suspensions with diffusion-controlled 
sustained drug release via the polyelectrolyte multilayer 
shell. Although many studies have been performed with 
oral microparticle preparations, a high drug loading 
efficiency independent on the method of preparation 
was not attained. All of the methods of preparing these 
microparticles are batch production methods.

Since the primary goal of oral microparticles, i.e., 
providing an oral sustained-release preparation, has 
been attained, scientists are now working to develop 
an oral delivery system for peptide/protein drugs 
with microparticle technology. Peptide/protein drugs 
undergo hydrolysis before being absorbed by the 
gastrointestinal (GI) tract. Microparticles are a solid 
preparation and can protect peptide/protein drugs from 
attack by hydrolytic enzymes. Cui et al. prepared 
insulin loaded copoly(lactic/glycolic) acid (PLGA)-
hydroxypropylmethyl cellulose (HP55) nanoparticles 
as an oral DDS (59). The nanoparticles were prepared 
by diffusion of a modified emulsion solvent in water, 
and their physicochemical characteristics, drug 
release in vitro, and hypoglycemic effects in diabetic 
rats were evaluated. The particle sizes of the PLGA 
nanoparticles (PNP) and PLGA-HP55 nanoparticles 
(PHNP) were 150-169 nm, and the drug loading rates 
were 50.3-65.4%. The initial burst release of insulin 
from the nanoparticles in simulated gastric fluid over 
1 h was 50.5-19.8%. In diabetic rats, the relative 
bioavailability (BA) of insulin from PNP and PHNP 
was, in comparison to subcutaneous (s.c.) injection (1.0 
IU/kg) of insulin, 3.68-6.27%. Ye et al. (60) prepared 
chitosan and sodium alginate microcapsules containing 
insulin by LbL self-assembly. 

In contrast, the current author designed three-
layer microcapsules (TLMCs). TLMCs were prepared 
individually. Figure 2 shows the basic method of 
preparing TLMCs by discharge as is widely used in 
printing technology, where it is known as the ink-
jet method. As each TLMC is prepared individually, 
the obtained microcapsules have far less variation in 

shape and size than conventional microcapsules. In 
addition, TLMCs do not have only one function, i.e. 
controlled release but other functions like targeting 
and adhesiveness. TLMCs were used in an oral 
preparation as a gastrointestinal (GI) mucoadhesive 
patch system known as GI-MAPS. GI-MAPS was 
designed to surmount the two hurdles for oral peptide/
protein preparations, i.e. hydrolytic degradation by 
digestive enzymes and poor membrane permeability 
of peptide/protein drugs due to their 3D structures. As 
many conventional oral drug delivery systems (DDS) 
including absorption enhancers, emulsions, liposomes, 
and micro- and nano-capsules, protein unfolding 
technology, protein conjugates, and colon delivery 
technology have been examined to develop oral peptide/
protein drugs. However, trials of all of these drugs have 
all faced the hurdle of a low BA because the dilution 
and spread of an absorption enhancer in the GI tract 
reduces the effectiveness of the absorption enhancer on 
peptide/protein drugs. GI-MAPS is designed to solve 
these problems. GI-MAPS consists of three layers: 
(i) a water-insoluble basement membrane, (ii) a drug-
carrying layer, and (iii) a pH sensitive bioadhesive 
surface membrane. After oral administration, the 
surface layer dissolves at the targeted intestinal site 
and adheres to the small intestinal wall, where a closed 
space is created at the target site of the GI mucosa by 
adherence to the mucosal membrane. As a result, both 
drug and absorption enhancer coexist in the closed 
space and a high drug concentration gradient is formed 
between the system and enterocytes, contributing 
to the enhanced absorption of peptide/protein drugs 
because peptide/protein drugs are absorbed by a passive 
diffusion mechanism. As a result, the absorption 
enhancer is used to full advantage.

Microfabrication technology has been developed 
to prepare micron-sized GI-MAPS with a diameter 
of 500-1,000 μm. Figure 2 shows a manufacturing 
process using this method; a large-scale GI-MAPS-
producing machine was developed in 2008. This 
machine has three to four nozzles that are modified to 
discharge a polymer solution prepared with an organic 
solvent. Three kinds of solutions are discharged in 
series; for example, an enteric polymer solution is first 
discharged onto the surface of a glass plate and then a 
drug solution with an absorption enhancer and adhesive 
polymer is discharged onto the dried enteric polymer 
layer with a smaller diameter of the drug layer than 
that of the first enteric layer. Finally, a water-insoluble 
polymer solution is discharged onto the drug layer 
with a diameter larger than that of drug layer. Figure 
2 also shows the GI-MAPS obtained by this method. 
TLMCs are made individually via this method. A 
previous review by the current author provides useful 
information on the biopharmaceutical evaluation of GI-
MAPS (61).

The advantages of TLMCs are: (i) high drug loading 
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efficiency, i.e., theoretically 100%, (ii) little size 
variation for the microcapsules obtained, and (iii) the 
obtained microcapsules have not only sustained-release 
but also other functions like site selectivity, targeting, 
and adhesiveness. The areas for use of TLMCs as an 
oral DDS are: (i) oral peptide/protein delivery, (ii) 
sustained-release preparation, and (iii) colon delivery of 
drugs. With oral delivery of peptide/protein drugs, their 
BAs improved dramatically, reaching 23% for G-CSF 
in dogs (62) and 12.3% for erythropoietin (EPO) in rats 
(63).

3. Injection preparation

Microparticles for injection preparation are also 
prepared by the methods described in the previous 
section. They are: (i) emulsion solvent extraction/
evaporation, (ii) phase separation (coacervation), 
and (iii) spray-drying. The most clinically significant 
microparticle preparation is leuprolide acetate 
microspheres (LupronTM), created by Takeda Chemical 
Industries and registered with the FDA in 1989. 
PLGA microspheres containing leuprolide acetate 
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were prepared by an emulsion solvent evaporation 
method. A W/O emulsion was first prepared with 
an inner water phase containing leuprolide acetate 
and gelatin and an oil phase containing PLGA plus 
additives such as glyceryl monocaprate and D-lactide 
in dichloromethane. Then, a W/O/W emulsion was 
formed with a cooled aqueous 0.1% polyvinyl alcohol 
solution. Hardened microspheres were obtained by 
evaporating dichloromethane (64). Other researchers 
used phase separation to prepare polylactic acid (PLA) 
microspheres and PLGA microspheres. However, they 
did not succeed as fast as the Takeda group did. In such 
instances, a great deal of heptane was needed as an 
organic solvent (65). However, completely removing 
heptane proved difficult because some heptane 
remained as a contaminant inside microspheres. In 
addition, the great deal of heptane required to prepare 
microspheres resulted in difficulties with large-scale 
production of microspheres. The two water phases 
were prevented from mixing by increasing the viscosity 
of the W/O emulsion. As a result, an extremely high 
loading rate of leuprolide acetate was obtained. 
However, an initial burst release of leuprolide after 
injection into experimental animals occurred because 
the microspheres used did not have a microcapsule 
structure (66). During the initial period of development, 
monomers of lactic acid and glycolic acid connected by 
ester bonds were believed to undergo ester hydrolysis, 
resulting in the release of leuprolide (67). However, 
later research revealed that the basic amino acid residue 
of leuprolide acetate interacted with the terminal 
carboxyl group of PLGA inside the microspheres. 
This structure is very stable and leuprolide acetate 
was not easily released even when the dissolution 
medium, water, entered the microspheres. Therefore, 
leuprolide was released from the microspheres in a 
sustained manner (68). PLGA microspheres released 
leuprolide over a period of 1 to 3 months, alleviating 
the pain caused by daily injections and improving 
patient compliance (69). Thus, leuproleide acetate 
microspheres were an epoch-making preparation in 
the history of microparticle technology. A review by 
Andersen et al. provides useful information on the 
biological fate of PLA and PLGA (70).

Many reports have previously been published 
on both microcapsules and microspheres, including 
nanospheres, for use as injection preparations. Table 2 
summarizes the reports on micro and nanoparticles as 
injection preparations.

As shown in this table,  solvent extraction/
evaporation is the most popular method for preparing 
PLA and PLGA microspheres.  The review by 
O'Donnell et al. (134) provides useful information 
on the advantages of this method. The review by 
Soppimath et al. (135) also focuses on the preparation 
of microcapsules and microspheres by polymerization.

Microchannel emulsification was introduced to 

decrease the variation in size of gelatin microspheres 
(136). In such instances, the core material solution/
suspension must continuously flow into the wall-
forming material solution. A new trend offered 
by microtechnology in mechanics has allowed a 
continuous low flow rate, resulting in the decreased 
size of the obtained microcapsules with decreased 
variation in size (137,138). The basic concept of 
producing microcapsules is the same as that used in an 
encapsulator provided by Inotech AG (Switzerland) with 
a large size nozzle. Recent advances in microfabrication 
technology have allowed smaller double nozzles. PLGA 
in dichloromethane solution, 5 w/v%, was discharged 
through the outer nozzle as a wall-forming material 
and core material was discharged through the inner 
nozzle. The discharged particles were collected in a 1 
w/v% polyvinyl alcohol solution. Then, microcapsules 
were obtained by the solvent/evaporation method. 
By changing the nozzle size, microcapsule size was 
controlled from 45 to 500 μm with less variation in size. 
Yeo et al. (139) described a new method for making 
reservoir-type microcapsules by an interfacial phase 
separation principle using ink-jet nozzles. Two ink-jet 
nozzles that comprise a dual microdispenser system 
continuously produce two streams of liquid droplets 
and are aligned so that droplets from one stream collide 
with droplets from the other stream. After a pair of 
droplets collides, the polymer droplet spreads over the 
aqueous droplet to cover the surface of the aqueous 
droplet. Mass transfer between the two liquids, i.e., 
solvent exchange, results in the formation of a polymer 
membrane on the surface of the aqueous droplet. The 
formation of the polymer membrane depends largely 
on the favorable spread of the polymer solution on the 
aqueous droplets and fast solvent exchange and requires 
judicious selection of the organic solvent. Simple and 
fast screening methods were developed for selection of 
a proper solvent. Screening procedures identified ethyl 
acetate as one of the most desirable solvents. Ethyl 
acetate and the dual microdispenser system were used 
to form microcapsules that were subsequently examined 
by microscopic methods to demonstrate their unique 
geometry. Details are available in the review by Freitas 
et al. (140).

Thus microencapsulation technology has made 
advances in the past few decades. However, the 
microcapsules and microspheres obtained with either 
method have spherical shape. For an oral sustained-
release preparation, initial burst release is not a critical 
factor because the rate of BA of the drug after oral 
administration is low. However, initial burst release 
is a critical factor for a sustained-release injection 
preparation where the rate of BA of a drug is fast 
after sc injection of microparticles. The conventional 
microparticles described above cannot solve the initial 
burst release of the core drug. On the other hand, 
TLMCs as designed by the current author do not 
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have an initial burst release of the encapsulated drug. 
TLMCs are unique and also applicable to a sustained-
release sc injection preparation. In accordance with the 
preparation of TLMCs as GI-MAPS, as was described 
in the previous section, FITC-dextran was encapsulated 
into TLMCs and a proof-of-concept (POC) experiment 

was performed in which poly-ε-caprolactone (PCL) 
was used as the wall-forming material. The capsule 
size was less than 1,000 μm. A rate-control layer with 
a thickness of approximately 10 μm was first formed 
by discharging a PCL solution containing different 
amounts of plasticizer including a surfactant. Second, 
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Drug   Wall-forming material            Method   Reference

Acetaminophen  PLA         MC  solvent evaporation             (71)
Amphotericin-B  albumin         NS  pH-coacervation             (72)
Ascorbic acid  pea protein         MP  spray dry              (73)
Bovine serum albumin PLGA         NP  solvent evaporation              (74)
Bupivacaine  PLA         MS  solvent evaporation             (75)
Camptothecin  PCL         MS  solvent evaporation             (76)
Captopril   PLG          MS  solvent evaporation              (77)
Cisplatin   PLA         MS  solvent evaporation             (78)
   Chitosan         MS  emulsion-chemical crosslink            (79)
Ciprofl oxacin  BSA         MS  spray dry              (80)
Cyclosporine A  PLGA         MS  solvent evaporation              (81)
   PLGA, PLA        MP, NP solvent evaporation             (82)
Cytosine arabinoside  PGA/PGA derivative        NP  interfacial deposition             (83)
Dexamethasone  PLGA         MP  solid-oil-oil-oil             (84)
Diclofenac   PCL         NS  spray-dry              (85)
Enkephalin  PGA         MC  solvent evaporation             (86)
Ethyliopanoate  poly(benzyl L-glutamate)       MS  solvent evaporation             (87)
Finasteride   PPCM         MS  solvent evaporation             (88)
5-fl uorouracil (5-FU)  PLA         MS  solvent evaporation             (89)
   poly(ortho ester)        MC  solvent evaporation              (90)
   poly(methylidene malonate)       MS  emulsion/extraction             (91)
   chitosan coated PLA        MS  solvent evaporation             (92)
   poly(methylidene malonate)       MS  emulsion/extraction             (93)
5-FU, indomethacin  PLGA         NS  emulsifi cation solvent diffusion            (94)
Ganciclovir  albumin         NP  coacervation             (95)
   PLGA (Intraocular)        MS  solvent evaporation              (96)
G-CSF   PLGA         NP  emulsion/solvent diffusion            (97)
Gemcitabine  polycyanoacrylate        NS, NC nanoprecipitation             (98)
Gentamicin  coralline hydroxyapatite       MS  dispersion polymerization            (99)
   BSA         MS  spray dry            (100)
   PLA/PLGA        MS  spray dry            (101)
human growth hormone PLGA         MS  atomizer freezedry           (102)
   PLGA         MC  solvent evaporation           (103)
   dex-HEMA          MS  emulsion/polymerization          (104)
Glycine homopeptides PLA         MS  solvent evaporation           (105)
Griseofulvin  PLA         MS  solvent evaporation           (106)
Heparin    gelatin         MC  coacervation           (107)
Indomethacin  polyesters         NS  spray-dry            (108)
Insulin   PLGA/agarose        MS  phase separation           (109)
   chitosan         MC  emulsion interfacial cross link    (110,111)
   PLGA         MS  solvent evaporation           (112)
Interferon   gelatin         MS  coacervation           (113)
   PLGA         MS  solvent evaporation           (114)
Levodopa   gelatin (Nasal)        MS  solvent evaporation           (115)
Methotrexate  gelatin         MS  azide coupling-grafting          (116)
Paclitaxel   poly(methylidene malonate       MS  solvent evaporation           (117)
   PLGA         NP  spray dry            (118)
Pentamidine  PLGA         MC  solvent evaporation    (119,120)
Peptides   PLGA         MS  multiple emulsion           (121)
   HSA/alginate        MS  emulsion transacylation          (122)
Prednisone   star oligo/poly(DL-lactide)       MS  ultrasonic-dispersion            (123)
Protein   gelatin         NS  coacervation    (124,125)
Ribonuclease, lysozyme PLA         MP  supercritical carbon dioxide          (126)
Rifampicin  PLA         MS  solvent evaporation           (127)
Steroids   albumin         MS  solvent evaporation           (128)
Streptomycin  albumin and gelatin        MS  coacervation           (129)
Testosterone  PLA         MS  solvent evaporation           (130)
Tetanus toxoid  Poloxamer/PLGA        MS  solvent extraction           (131)
Timolol     PLG          MS  solvent evaporation           (132)
Vancomycin  PCL         MP  solvent evaporation           (133)

Table 2. Microcapsules and microspheres as sustained-release injection preparations

BSA, bovine serum albumin; CA, cellulose acetate; CAB, cellulose acetate butyrate; CAP, cellulose acetate phthalate; CAT, cellulose acetate 
trimellitate; CMEC, carboxymethylethylcellulose; dex-HEMA, hydroxyethyl methacrylated dextran; HPMCP, hydroxypropylmethylcellulose 
phthalate; HSA, human serum albumin; MP, microparticles; NC, nanocapsules; NS, nanospheres; NP, nanoparticles; PCL, poly(epsilon-
caprolactone); PGA, poly(glycerol adipate); PLA, polylactic acid; PLG, polyglycolic acid; PLGA, copoly(lactic/glycolic) acid; Poly(THPMA), 
poly(2-tetrahydropranyl methacrylate); PPCM, poly(propylene carbonate maleate).
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FITC-dextran was discharged. Finally, the PCL solution 
was discharged and a water-insoluble basement layer 
was formed. The in vitro release experiment showed 
long term sustained-release characteristics as shown in 
Figure 3, and an initial burst release of FITC-dextran 
was not observed. TLMCs are also applicable to a wide 
variety of peptide/protein drugs. Therefore, TLMCs 
containing leuprolide acetate were prepared and 
sustained-release characteristics were ascertained from 
the serum leuprolide concentration vs. time profile for 
more than 10 days after sc administration of the TLMC 
preparation in rats. The advantages of TLMCs are: (i) a 
high drug loading efficiency, theoretically 100%, (ii) no 
initial burst release, and (iii) little variation in particle 
size. A GI-MAPS-producing machine can also be used 
to prepare TLMCs, although its nozzle size must be 
decreased.

4. Percutaneous preparation

Thanks to advances in biotechnology, several important 
biopharmaceuticals such as insulin, erythropoietin 
(EPO), granulocyte colony stimulating factor (G-CSF), 
growth hormone (GH), and interferon (IFN) have 
been developed (141). The demand for the delivery 
of macromolecular biopharmaceuticals like peptide/
protein drugs is increasing (142). Although the most 
preferable form of dosage is an oral preparation, the 
BAs of these drugs are almost 10-23% even when 
strong absorption enhancers are formulated into GI-
MAPS. As a result, no oral preparation of these 
drugs has entered the pharmaceutical market. Even 
today, these drugs are administered by iv and/or sc 
injections. Percutaneous administration is an attractive 
alternative for the delivery of these drugs because 
of its many advantages: (i) no or less degradation by 
hydrolytic enzymes than in the GI tract, (ii) no first-
pass effects of the liver associated with oral delivery, 
(iii) no or less pain than sc injection, (iv) convenience 

of administration over iv injection, (v) a better and 
continuously controlled-delivery rate than oral and sc 
sustained-release preparations, and (vi) easy removal 
when side-effects appear. Despite their many potential 
advantages, transdermal drug delivery systems (TDDS) 
are severely limited by the poor permeability of 
drugs through the human skin, i.e. most drugs do not 
permeate through the skin at therapeutically relevant 
rates. Many DDSs have been examined in order to 
increase the rate of drug permeation through the skin, 
including chemical enhancers and physical methods. 
Among them, chemical enhancers have contributed 
most to the development of TDDS. Table 3 shows 
TDDS products launched on the American market prior 
to 2007. The permeability of small molecules through 
the skin can be enhanced by chemical enhancers (143). 
However, their use is limited because they trigger skin 
irritation or cause other safety concerns. Iontophoresis, 
electroporation, and ultrasound have been studied 
as methods of enhancing physical absorption (144). 
Iontophoresis uses an electric field to drive ionized 
molecules across the skin by electrophoresis and 
nonionized molecules by electroosmosis. Despite 
concerns about skin irritation, iontophoresis may be 
useful in delivering some peptides and small proteins 
(145). As shown in Table 3, a TDDS with lidocaine by 
iontophoresis was launched on the American market 
in 2004. Electroporation and ultrasound also provided 
temporary enhancement of skin permeability of both 
small drugs and macromolecules (146,147).

However, recent advances in microfabrication 
technology have allowed preparation of microneedles, 
which may represent a novel TDDS. Since their 
first description by Henry et al. in 1998 (148), 
microfabrication techniques for the production of 
silicon, metal, glass, and polymer microneedle arrays 
with micrometer dimensions have been reported 
(149-152). The microneedles are either solid or hollow 
and posses a geometrical shape. A microneedle TDDS 
is roughly defined by a micron-sized needle preparation 
through and by which a drug is percutaneously 
administered. Microneedle TDDSs are classified as 
follows: (i) extremely small needles through which a 
drug solution can be injected into the skin, (ii) metallic 
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Figure 3. In vitro release profiles of FITC-Dextran from three-
layered microcapsules (TLMC) made of poly-ε-caprolactone. 
Release rate was controlled by the addition of plasticizer, PEG 
400, (●) 30%, (♦) 25%, (■) 20% and (▲) 5%. Each point shows 
the mean ± SE of 3-4 experiments.

1980               scopolamine patch
1981               nitroglycerin patch
1983               clonidine patch
1985               estradiol patch
1991               fentanyl patch
1992               estradiol/norethindrone patch
1993                nicotine patch
1994               testosterone patch
1999               lidocine patch
2002               norelgestromin/ethynyl estradiol patch
2003               oxybutynin patch
2004               lidocaine iontophoresis
2005               selegilene patch
2006               methylphenidate patch
2007               rotigitine patch, rivastigmine patch

Table 3. Transdermal DDS products in USA
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and/or silastic microneedles onto which a surface drug 
is coated, and (iii) metallic and/or silastic microneedles 
by which conduits known as micropores are made 
on the skin and a drug solution is applied once the 
microneedles are removed. The physiology of the skin 
must be understood in order to fully appreciate the 
function of microneedles.

Human skin consists of three layers, i.e. stratum 
corneum (SC), epidermis, and dermis. The SC is the 
outer layer of the skin with a thickness of 10-15 μm 
and is dead tissue. The SC is a strong primary barrier 
against exogenous compounds including drugs. The 
second barrier is the viable epidermis (50-100 μm), 
which contains tissue-like living cells. However, there 
are no blood vessels in the epidermis. Deeper still, there 
are blood capillaries in the dermis, which accounts for 
the bulk of skin volume and contains living cells in the 
form of nerves. When microneedle arrays are inserted 
into the skin, conduits are created for the penetration 
of a drug across the SC. Once a drug penetrates the 
SC, it can diffuse rapidly through the deeper tissue 
and permeate the underlying capillaries for systemic 
absorption. As microneedles do not penetrate to the 
dermis, where the nerve system exists, pain does not 
result. Based on this understanding of the skin anatomy, 
microneedles were designed to penetrate the SC without 
stimulating the pain receptors found in deeper tissue 
(153).

Silicon microneedles are produced with a standard 
microelectromechanical system, i.e. microfabrication 
techniques. Chabri et al. (154) prepared arrays of 
microconduits for direct and controlled access of 
molecules across the SC; when inserted into the skin, 
the arrays enabled drugs to diffuse into the underlying 
viable epidermis and dermis. Although microneedle 
arrays originally utilized solid projections for delivery 
of materials, microfabricated microneedle arrays 
combined with fluidic microchannels for transdermal 
extraction of extracellular fluid and blood have also 
been investigated. Chabri et al. prepared microneedles 
using a modified form of the BOSCH deep reactive 
ion etching process, which consists of a combination 
of an isotropic etch and BOSCH reaction. The 
microfabrication of microneedles involves the use of 
tools developed by the microelectronic industry to 
make integrated circuits. Although these tools offer 
the potential for mass production of microneedles, 
production is often highly specialized and includes 
complex multi-step processes (155,156). For example, 
450-μm-thick silicon wafers were spun-coated with 
photoresist and baked pre-exposure. The wafers were 
then exposed with the test mask and developed. The 
wafers were baked postexposure; the thickness of the 
resist obtained was approximately 8 μm. A standard 
lithographic mask bearing the appropriate dot array 
pattern was used during UV exposure to produce a 
photoresist etch mask. The surface was subsequently 

etched using a reactive blend of fluorinated and oxygen 
gases, with those regions directly underlying the 
photoresist mask being resistant to the etching process. 
The waters were loaded and subjected to an SF6 etch to 
provide an isotropic etch profile. Subsequently, ASETM 
etch was used to define the length of the microneedle. 
Finally, the resist was removed in oxygen plasma. Thus, 
the method of Chabri et al. falls under technology used 
in the field of semiconductors.

In addition to silicon-based microneedles, metallic 
microneedles were also proposed. They are classified 
into two categories, hollow microneedles (149,151) 
and a microneedle array made of stainless steel (157) 
and titanium (158). Silastic and metallic microarrays 
are used in two ways. One is the application of a drug 
solution to the skin after physical conduits are made 
by inserting a metallic and/or silastic microarray. The 
second way is to use a microarray with the drug coating 
its surface. After the insertion of the microarray into 
the skin, the drug is dissolved and absorbed into the 
skin. Hollow microneedles have also been developed 
in which a drug solution is injected into the skin 
through hollow microneedles. As is readily apparent, 
these hollow microneedles are quite distinct from 
pharmaceuticals. Furthermore, silicon microneedle 
arrays are fragile, the use of silicon is relatively 
expensive, and silicon has yet to be proven to be a 
biocompatible material. Therefore, these microneedles 
fall under the category of medical devices.

After Prausnitz et al. showed that the absorption 
of a protein antigen, ovalbumin, was extensively 
increased by microneedle technology (158), the 
absorption-enhancing effects of microneedle arrays 
on the following drugs have been reported: (i) 
small compounds with a MW of less than 1 kDa 
like diclofenac (159), methyl nicotinate (160), and 
bischloroethyl nitrosourea (161), (ii) intermediate 
compounds (MW between 1 and 10 kDa) like FITC-
Dextran (162), desmopressin (163), and insulin 
(149,151,157,159), and (iii) macromolecules (MW 
larger than 10 kDa) like FITC-Dextran (162), bovine 
serum albumin (164), ovalbumin (158), antisense 
oligonucleotides (165), plasmid DNA (166), and 
nanospheres (167).

Another area of study has been self-dissolving 
micropiles (SDMPs). Miyano et al. (168) proposed 
SDMPs made of maltose for the percutaneous 
application of dye for tattoos and cosmetics. In their 
system, maltose was used as a base to make SDMPs. To 
make maltose SDMPs, maltose was melted by heating 
it to its melting point, 103°C, and SDMPs were made 
by introducing maltose into a metallic mold. As a high 
temperature is needed to make SDMPs, insulin may 
easily degrade and lose its pharmacological activity. 
In addition, maltose is a disaccharide, so it causes 
difficulties in obtaining SDMPs with a hard, steep top 
because under high humidity in particular it absorbs 
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water from the air; the top of micropile then bends, 
resulting in difficulty inserting the micropile into the 
skin.

To overcome these pitfalls, SDMPs made of water-
soluble thread-forming polymer were developed. 
Polysaccharides like chondroitin sulfate, dextran, and 
hyaluronic acid, proteins like albumin, and synthetic 
polymers like polyvinyl alcohol were used as a water-
soluble thread-forming polymer. A drug solution 
or drug powder was added to a dense solution of a 
polymer or combination of polymers. SDMPs were 
originally formed by withdrawing the top of the 
micropile tip after the drug and polymer were mixed 
under low or room temperature. However, as shown in 
Figure 4, microfabrication technology allows SDMPs to 
be made individually by means of a mold with micron-
sized pores, for example, 500 μm in length and 300 
μm in diameter, in the opening base. Their size can be 

changed from 500 μm to 100 μm in length and from 
500 μm to 100 μm in diameter. The method of preparing 
SDMPs is simple in comparison to preparation by 
microelectromechanical technology. Namely, a mixture 
of polymer and drug solution is dispensed into a mold 
made of polymer resin and dried under pressure. After 
they fully dry, SDMPs are removed from the mold. A 
pressing system is useful in accelerating the polymer 
and drug mixture's insertion into the mold and drying. 
Metallic microneedles can be formed with MEMS, for 
example, to make a polymer resin mold. In research 
by the current author, 100 microneedles with a length 
of 500 μm and base diameter of 300 μm were formed 
in a 1.0-cm2 area on a base plate. A polymer resin 
mold with 100 microwells was obtained wth these 
master micropiles. A mixture of polymer and drug was 
obtained by kneading water-soluble thread-forming 
polymer, chondroitin sulfate, and a small amount of 
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insulin solution; the resultant mixture was introduced 
into the wells of the polymer resin mold. Finally, the 
mold was covered with a stainless steel plate and stored 
in a cold room to dry overnight. The next day, the plate 
was removed and the hardened mixture was detaching 
onto supporting material to obtain SDMPs. Figure 5 
shows SDMPs containing insulin and Evans blue (EB) 
obtained by this method. EB was used to stain SDMPs 
because SDMPs made of chondroitin sulfate and insulin 
are transparent. The mold can be changed to make 
SDMPs of different sizes, e.g. 200 μm in length and 100 
μm in diameter. SDMPs can easily be prepared under 
low or room temperature. Therefore, SDMPs can be 
used with drugs that are sensitive to high temperature 
such as peptide/protein drugs, i.e. insulin, EPO, and 
GH. As water-insoluble drugs can be formulated into 
SDMN as suspensions, SDMPs can also be used with 
genetic materials, i.e. oligonucleotide delivery, and 
vaccines including both protein and DNA vaccines. As 
the shape of the obtained SDMPs is similar to that of a 
missile, this TDDS is often known as a "micromissile 
capsule". POC studies on the percutaneous absorption 
of peptide/protein drugs were performed using SDMPs 
and showed that high BAs were obtained in mice, rats, 
and dogs, specifically yielding 90% for insulin (169), 
80% for EPO (170), 88% for IFN, and 95% for human 
GH. After insulin SDMPs were applied to the skin, 
the base polymer started to dissolve and the drug was 
immediately released and then absorbed into systemic 
circulation. In a dog experiment, the plasma glucose 
level decreased after insulin SDMPs were applied to the 
skin at 1.0 IU/kg. The same degree of hypoglycemic 
effect was observed after sc injection of an insulin 
solution in the same dogs at the same dose.

5. Conclusion

Thanks to advances in microfabrication technology, 
novel microparticles such as three-layer microcapsules 
(TLMC) and self-dissolving micropiles (SDMP) can be 
prepared on a large scale. As these microparticles are 
prepared individually, the loading efficiency of a drug is 
theoretically 100% and a low variation in microparticle 

size can be attained. These microparticles overcome the 
disadvantages of conventional microparticles and also 
have multiple functions. These microparticles have led 
to a renaissance in pharmaceutical technology.

References

1. Müller RH. Lipid nanoparticles: recent advances. Adv 
Drug Deliv Rev 2007; 59:375-376.

2. Gasco MR. Lipid nanoparticles: perspectives and 
challenges. Adv Drug Deliv Rev 2007; 59:377-378.

3. Wang G. Liposomes as drug delivery vehicles. In: Drug 
Delivery: Principles and applications (Wang B, Siahaan 
T, Soltero RA eds.), Wiley-Interscience, Hoboken, NJ, 
USA, 2005; pp. 411-434.

4. Freitas S, Hans PM, Gander B. Microencapsulation by 
solvent extraction/evaporation: reviewing the state of 
the art of microsphere preparation process technology. J 
Control Rel 2005; 102:313-332.

5. Li SP, Kowarski CR, Feld KM, Grim WM. Recent 
advances in microencapsulation technology and 
equipment. Drug Dev Ind Pharm 1988; 14:353-376.

6. Vachon MG, Nairn JG. Physico-chemical evaluation 
of acetylsalicylic acid-Eudragit RS100 microspheres 
p r epa red u s ing a so lven t -pa r t i t i on me thod . J 
Microencapsul 1995; 12:287-305.

7. Va c h o n  M G ,  N a i r n  J G .  T h e  i n f l u e n c e  o f 
mic roencapsu la t ion us ing Eudrag i t RS100 on 
the hydrolysis kinetics of acetylsalicylic acid. J 
Microencapsul 1997; 14:281-301.

8. Koida Y, Kobayashi M, Nagahama N, Samejima 
M. A new method for preparation of enteric-coated 
microcapsules from aqueous medium. Chem Pharm Bull 
1986; 34:5115-5121.

9. Va c h o n  M G ,  N a i r n  J G .  T h e  i n f l u e n c e  o f 
mic roencapsu la t ion us ing Eudrag i t RS100 on 
the hydrolysis kinetics of acetylsalicylic acid. J 
Microencapsul 1997; 14:281-301.

10. Arabi H, Hashemi SA, Fooladi M. Microencapsulation 
of allopurinol by solvent evaporation and controlled 
release investigation of drugs. J Microencapsul 1996; 
13:527-535.

11. Bogataj M, Mrhar A, Kristl A, Kozjek F. Preparation 
and evaluation Eudragit E microspheres containing 
bacampicillin. Drug Dev Ind Pharm 1989; 15:2295-2313.

12. J o h n  P M ,  M i n a t o y a  H ,  R o s e n b e r g  F J . 
Microencapsulation of bitolterol for controlled release 
and its effect on bronchodilator and heart rate activities 
in dogs. J Pharm Sci 1979; 68:475-481.

13. S a t p a t h y G , R o s e n b e rg M . E n c a p s u l a t i o n o f 
chlorothiazide in whey proteins: effects of wall-to-
core ratio and cross-linking conditions on microcapsule 
properties and drug release. J Microencapsul 2003; 
20:227-245.

14. Beck RC, Pohlmann AR, Hoffmeister C, Gallas 
MR, Collnot E, Schaefer UF, Guterres SS, Lehr 
CM. Dexamethasone-loaded nanoparticle-coated 
microparticles: Correlation between in vitro drug release 
and drug transport across Caco-2 cell monolayers. Eur J 
Pharm Biopharm 2007; 67:18-30.

15. Constantin M, Fundueanu G, Bortolotti F, Cortesi R, 
Ascenzi P, Menegatti E. A novel multicompartimental 
sys tem based on aminated poly(vinyl a lcohol) 
microspheres/succinoylated pullulan microspheres 

150

Figure 5. Micromissile capsules, 100 capsules, are formed on 1.0 cm2 
patch.



www.ddtjournal.com

Drug Discov Ther 2008; 2(3):140-155. 

for oral delivery of anionic drugs. Int J Pharm 2007; 
330:129-137.

16. Arica B, Arica MY, Kaş HS, Hincal AA, Hasirci V. 
In-vitro studies of enteric coated diclofenac sodium-
carboxymethylcellulose microspheres. J Microencapsul 
1996; 13:689-699.

17. Lin WJ, Wu TL. Modification of the initial release 
of a highly water-soluble drug from ethyl cellulose 
microspheres. J Microencapsul 1999; 16:639-646.

18. Ghorab MM, Zia H, Luzzi LA. Prepara t ion of 
controlled release anticancer agents. I: 5-Fluorouracil-
ethyl cellulose microspheres. J Microencapsul 1990; 
7:447-454.

19. Akbuğa J . Furosemide- loaded e thy l ce l lu lose 
microspheres prepared by spherical crystallization 
technique: Morphology and release characteristics. Int J 
Pharm 1991; 76:193-198.

20. Dubernet C, Rouland JC, Benoit JP. Ibuprofen-loaded 
ethylcellulose microspheres: analysis of the matrix 
structure by thermal analysis. J Pharm Sci 1991; 
80:1029-1033.

21. Dalal PS, Narurkar MM. In vitro and in vivo evaluation 
of sustained release suspensions of ibuprofen. Int J 
Pharmaceut 1991; 73:157-162.

22. Wang C, Ye W, Zheng Y, Liu X, Tong Z. Fabrication of 
drug-loaded biodegradable microcapsules for controlled 
release by combination of solvent evaporation and layer-
by-layer self-assembly. Int J Pharm 2007; 338:165-173.

23. Perumal D. Microencapsulation of ibuprofen and 
Eudragit RS 100 by the emulsion solvent diffusion 
technique. Int J Pharm 2001; 218:1-11.

24. Babay D, Hoffman A, Benita S. Design and release 
kinetic pattern evaluation of indomethacin microspheres 
intended for oral administration. Biomaterials 1988; 
9:482-488.

25. Tirkkonen S, Urtti A, Paronen P. Buffer controlled release 
of indomethacin from ethylcellulose microcapsules. Int J 
Pharm 1995; 124:219-229.

26. Raffin Pohlmann A, Weiss V, Mertins O, Pesce da 
Silveira N, Stanisçuaski Guterres S. Spray-dried 
indomethacin-loaded polyester nanocapsules and 
nanospheres: development, stability evaluation and 
nanostructure models. Eur J Pharm 2002; 16:305-312.

27. Yang GM, Kuo JF, Woo EM. Preparation and control-
release kinetics of isosorbide dinitrate microspheres. J 
Microencapsul 2006; 23:622-631.

28. Giunchedi P, Torre ML, Maggi L, Conti B, Conte U. 
Cellulose acetate trimellitate ethylcellulose blends 
for non-steroidal anti-inflammatory drug (NSAID) 
microspheres. J Microencapsul 1996; 13:89-98.

29. Moretti MD, Gavini E, Juliano C, Pirisino G, Giunchedi 
P. Spray-dried microspheres containing ketoprofen 
formulated into capsules and tablets. J Microencapsul 
2001; 18:111-121.

30. Palmieri G, Bonacucina G, Di Martino P, Martelli S. 
Microencapsulation of semisolid ketoprofen/polymer 
microspheres. Int J Pharm 2002; 242:175-178.

31. Pattarino F, Giovannelli L, Bellomi S. Effect of 
poloxamers on nifedipine microparticles prepared by 
hot air coating technique. Eur J Pharm Biopharm 2007; 
65:198-203.

32. Karasulu HY, Ertan G, Guneri T. Factorial design-
based optimization of the formulation of nitrofurantoin 
microcapsules. Pharm World Sci 1996; 18:20-25.

33. Ertan G, Sarigüllü I, Karasulu Y, Erçakir K, Güneri T. 

Sustained-release dosage form of nitrofurantoin. Part 
1. Preparation of microcapsules and in vitro release 
kinetics. J Microencapsul 1994; 11:127-135.

34. Raffin RP, Jornada DS, Re MI, Pohlmann AR, Guterres 
SS. Sodium pantoprazole-loaded enteric microparticles 
prepared by spray drying: Effect of the scale of 
production and process validation. Int J Pharm 2006; 
324:10-18.

35. Piao MG, Kim JH, Kim JO, Lyoo WS, Lee MH, Yong 
CS, Choi HG. Enhanced oral bioavailability of piroxicam 
in rats by hyaluronate microspheres. Drug Dev Ind 
Pharm 2007; 33:485-491.

36. Pongpaibul Y, Whitworth CW. Preparation and in vitro 
dissolution characteristics of propranolol microcapsules. 
Int J Pharm 1986; 33:243-248.

37. Lee DH, Sim GS, Kim JH, Lee GS, Pyo HB, Lee BC. 
Preparation and characterization of quercetin-loaded 
polymethyl methacrylate microcapsules using a polyol-
in-oil-in-polyol emulsion solvent evaporation method. J 
Pharm Pharmacol 2007; 59:1611-1620.

38. Takenaka H, Kawashima Y, Lin SY. Polymorphism 
of spray-dried microencapsulated sulfamethoxazole 
wi th ce l lu lose ace ta te phtha la te and col lo ida l 
silica, montmorillonite, or talc. J Pharm Sci 1981; 
70:1256-1260.

39. Wan LSC, Heng PWS, Chia CGH. Preparation of coated 
particles using a spray drying process with an aqueous 
system. Int J Pharm 1991; 77:183-191.

40. Wan LSC, Heng PWS, Chia CGH. Plasticizers and their 
effects on microencapsulation process by spray-drying in 
an aqueous system. J Microencapsul 1992; 9:53-62.

41. Wan LSC, Heng PWS, Ch ia CGH. Ci t r i c ac id 
as a plasticizer for spray-dried microcapsules. J 
Microencapsul 1993; 10:11-23.

42. Sa B, Bandyopadhyay AK, Gupta BK. Effect of 
microcapsule size and polyisobutylene concentration 
on the release of theophylline from ethylcellulose 
microcapsules. J Microencapsul 1996; 13:207-218.

43. Akiyama Y, Yoshioka M, Horibe H, Hirai S, Kitamori N, 
Toguchi H. Novel oral controlled-release microspheres 
using polyglycerol esters of fatty acids. J Control Rel 
1993; 26:1-10. 

44. Donbrow M, Hoffman A, Benita S. Gradation of 
microcapsule wall porosity by deposition of polymer 
mixtures (Eudragit RL and Eudragit RS). Phase 
separation of polymer mixtures and effects of external 
media and conditions on release. J Microencapsul 1995; 
12:273-285.

45. Bhardwaj SB, Shukla AJ, Collins CC. Effect of varying 
drug loading on particle size distribution and drug 
release kinetics of verapamil hydrochloride microspheres 
prepared with cellulose esters. J Microencapsul 1995; 
12:71-81.

46. Gürsoy A, Cevik S. Sustained release properties of 
alginate microspheres and tabletted microspheres of 
diclofenac sodium. J Microencapsul 2000; 17:565-575.

47. Coppi G, Iannuccelli V, Bernabei MT, Cameroni 
R. Alginate micropar t ic les for enzyme peroral 
administration. Int J Pharm 2002; 242:263-266.

48. Albin P, Markus A, Pelah Z, Ben-Zvi Z. Slow-release 
indomethacin formulations based on polysaccharides: 
evaluation in vitro and in vivo in dogs. J Control Rel 
1994; 29:25-39.

49. Jun HW, Lai JW. Preparation and in vitro dissolution 
tests of egg albumin microcapsules of nitrofurantoin. Int 

151



www.ddtjournal.com

Drug Discov Ther 2008; 2(3):140-155. 

J Pharm 1983; 16:65-77.
50. Genta I, Perugini P, Conti B, Pavanetto F. A multiple 

emulsion method to entrap a lipophilic compound into 
chitosan microspheres. Int J Pharm 1997; 152:237-246.

51. El-Gibaly I, Meki AMA, Abdel-Ghaffar SK. Novel 
B melatonin-loaded chitosan microcapsules: in vitro 
characterization and antiapoptosis efficacy for aflatoxin 
B1-induced apoptosis in rat liver. Int J Pharm 2003; 
260:5-22.

52. Sarmento B, Ribeiro A, Veiga F, Sampaio P, Neufeld R, 
Ferreira D. Alginate/chitosan nanoparticles are effective 
for oral insulin delivery. Pharm Res 2007; 24:2198-2206.

53. Ubaidulla U, Khar RK, Ahmed FJ, Sultana Y, Panda AK. 
Development and characterization of chitosan succinate 
microspheres for the improved bioavailability of insulin. 
J Pharm Sci 2007; 96:3010-3023.

54. Kas HS, Chitosan: properties, preparations and 
application to microparticulate systems. J Microencapsul 
1997; 14:689-711.

55. He P, Davis Stanley S, Illum L. In vitro evaluation of the 
mucoadhesive properties of chitosan microspheres. Int J 
Pharm 1998; 166:75-88.

56. Onishi H, Oosegi T, Machida Y, McGinity JW. Eudragit 
coating of chitosan-prednisolone conjugate microspheres 
and in vitro evaluation of coated microspheres. Drug 
Dev Ind Pharm 2007; 33:848-854.

57. Li T, Shi XW, Du YM, Tang YF. Quaternized chitosan/
alginate nanoparticles for protein delivery. J Biomed 
Mater Res 2007; 83A:383-390.

58. Pargaonkar N, Lvov YM, Li N, Steenekamp JH, de 
Villiers MM. Controlled release of dexamethasone from 
microcapsules produced by polyelectrolyte layer-by-
layer nanoassembly. Pharm Res 2005; 22:826-835.

59. Cui F, Tao A, Cun D, Zhang L, Shi K. Preparation 
of insulin loaded PLGA-HP55 nanoparticles for oral 
delivery. J Pharm Sci 2007; 96:421-427.

60. Ye S, Wang C, Liu X, Tong Z, Ren B, Zeng F. New 
loading process and release properties of insulin from 
polysaccharide microcapsules fabricated through layer-
by-layer assembly. J Control Rel 2006; 112:79-87.

61. Takada K. Oral delivery of haematopoietic factors: 
Progress with gastrointestinal mucoadhesive patches, 
microdevices and other microfabrication technologies. 
Am J Drug Deliv 2006; 4:65-77.

62. Eiamtrakarn S, Itoh Y, Kishimoto J, Yoshikawa Y, 
Shibata N, Murakami M, Takada K. Gastrointestinal 
mucoadhesive patch system (GI-MAPS) for oral 
administration of G-CSF, a model protein. Biomaterial 
2002; 23:145-152.

63. Venkatesan N, Uchino K, Amagase K, Ito Y, Shibata N, 
Takada K. Gastro-intestinal patch system for the delivery 
of erythropoietin. J Control Rel 2006; 111:19-26.

64. O g a w a Y, Ya m a m o t o M , Ta k a d a S , O k a d a H , 
Shimamoto T. Controlled-release of leuprolide acetate 
from polylactic acid or copoly(lactic/glycolic)acid 
microcapsules: influence of molecular weight and 
copolymer ratio of polymer. Chem Pharm Bull 1988; 
36:1502-1507.

65. Toguchi H, Ogawa Y, Okada H, Yamamoto M. Once-a-
month injectable microcapsules of leuprorelin acetate. 
Yakugaku Zassi 1991; 111:397-409.

66. Okada H, Inoue Y, Heya T, Ueno H, Ogawa Y, Toguchi 
H. Pharmacokinetics of once-a month injectable 
microspheres of leuprolide acetate. Pharm Res 1991; 
8:787-791.

67. Cohen S, Yoshioka T, Lucarelli M, Hwang LH, Langer 
R. Controlled delivery systems for proteins based on 
poly(lactic/glycolic acid) microspheres. Pharm Res 1991; 
8:713-720.

68. Ogawa Y. Development of long-acting leuprolide acetate 
preparation. Chemistry Today 2005; 406:63-66.

69. Cox MC, Scripture CD, Figg WD. Leuprolide acetate 
given by a subcutaneous extended-release injection: Less 
of a pain? Expert Rev Anticancer Ther 2005; 5:605-611.

70. Anderson JM, Sh ive MS. Biodegrada t ion and 
biocompatibility of PLA and PLGA microspheres. Adv 
Drug Deliv Rev 1997; 28:5-24.

71. Lai MK, Tsiang RC. Encapsulating acetaminophen into 
poly(L-lactide) microcapsules by solvent-evaporation 
technique in an O/W emulsion. J Microencapsul 2004; 
21:307-316.

72. Santhi K, Dhanaraj SA, Rajendran SD, Raja K, 
Ponnusankar S, Suresh B. Nonliposomal approach-A 
study of preparation of egg albumin nanospheres 
containing amphotericin-B. Drug Dev Ind Pharm 1999; 
25:547-551.

73. Pierucci AP, Andrade LR, Baptista EB, Volpato NM, 
Rocha-Leão MH. New microencapsulation system 
for ascorbic acid using pea protein concentrate as coat 
protector. J Microencapsul 2006; 23:654-662.

74. S o n g C X , L a b h a s e t w a r V, M u r p h y H , Q u X , 
Humphrey WR, Shebuski RJ, Levy RJ. Formulation 
and characterization of biodegradable nanoparticles 
for intravascular local drug delivery. J Cont Rel 1997; 
43:197-212.

75. Le Corre P, Estèbe JP, Chevanne F, Mallédant Y, Le 
Verge R. Spinal controlled delivery of bupivacaine from 
DL-lactic acid oligomer microspheres. J Pham Sci 1995; 
84:75-78.

76. Dora CL, Alvarez-Silva M, Trentin AG, de Faria TJ, 
Fernandes D, da Costa R, Stimamiglio M, Lemos-Senna 
E. Evaluation of antimetastatic activity and systemic 
toxicity of camptothecin-loaded microspheres in mice 
injected with B16-F10 melanoma cells. J Pharm Sci 
2006; 9:22-31.

77. Schartel B, Volland C, Li YX, Wendorff JW, Kissel 
T. Dielectr ic and thermodynamic propert ies of 
biodegradable poly(D,L-lactide-co-glycolide) and 
the effect on the micro-encapsulation and release of 
captopril. J Microencapsul 1997; 14:475-488.

78. Yoshida M, Uemura Y, Yoshizawa H, Kawano 
Y, Natsugoe S, Aikou T, Hatate Y. Application of 
microsphere for cancer treatment. Pharm Tech Jpn 2000; 
16:85-91.

79. Wang YM, Sato H, Adachi I, Horikoshi I. Optimization 
of the formulation design of chitosan microspheres 
containing cisplatin. J Pham Sci 1996; 85:1204-1210.

80. Li FQ, Hu JH, Lu B, Yao H, Zhang WG. Ciprofloxacin-
loaded bovine serum albumin microspheres: preparation 
and drug-release in vitro. J Microencapsul 2001; 
18:825-829.

81. Malaekeh-Nikouei B, Sajadi Tabassi SA, Jaafari MR. 
The effect of different grades of PLGA on characteristics 
of microspheres encapsulated with cyclosporine A. Curr 
Drug Deliv 2006; 3:343-349.

82. Lee WK, Park JY, Yang EH, Suh H, Kim SH, Chung DS, 
Choi K, Yang CW, Park JS. Investigation of the factors 
influencing the release rates of cyclosporin A-loaded 
micro- and nanoparticles prepared by high-pressure 
homogenizer. J Control Rel 2002; 84:115-123.

152



www.ddtjournal.com

Drug Discov Ther 2008; 2(3):140-155. 

83. Puri S, Kallinteri P, Higgins S, Hutcheon GA, Garnett 
MC. Drug incorporation and release of water soluble 
drugs from novel functionalised poly(glycerol adipate) 
nanoparticles. J Control Rel 2008; 125:59-67.

84. Thote AJ, Gupta RB. Formation of nanoparticles of a 
hydrophilic drug using supercritical carbon dioxide and 
microencapsulation for sustained release. Nanomedicine 
2005; 1:85-90.

85. Müller CR, Schaffazick SR, Pohlmann AR, de Lucca 
Freitas L, Pesce da Silveira N, Dalla Costa T, Guterres 
SS. Spray-dried diclofenac-loaded poly(epsilon-
caprolactone) nanocapsules and nanospheres. Preparation 
and physicochemical characterization. Pharmazie 2001; 
56:864-867.

86. Graves RA, Freeman T, Pamajula S, Praetorius N, 
Moiseyev R, Mandal TK. Effect of co-solvents on the 
characteristics of enkephalin microcapsules. J Biomater 
Sci Polym Ed 2006; 17:709-720.

87. Li C, Yang DJ, Kuang LR, Wallace S. Polyamino 
acid microspheres: Preparation, characterization and 
distribution after intravenous injection in rats. Int J 
Pharm 1993; 94:143-152.

88. Peng D, Huang K, Liu Y, Liu S. Preparation of novel 
polymeric microspheres for controlled release of 
finasteride. Int J Pharm 2007; 342:82-86.

89. Ciftci K, Hincal AA, Kas HS, Ercan MT, Ruacan S. 
Microspheres of 5-fluorouracil using poly(dl-lactic acid): 
in vitro release properties and distribution in mice after i.v. 
administration. Eur J Pharm Sci 1994; 1:249-258.

90. Lin YH, Vasavada RC. Studies on microencapsulation 
of 5-fluorouracil with poly(ortho ester) polymers. J 
Microencapsul 2000; 17:1-11.

91. Fournier E, Passirani C, Colin N, Breton P, Sagodira 
S, Benoit JP. Development of novel 5-FU-loaded 
poly(methylidene malonate 2.1.2)-based microspheres 
for the treatment of brain cancers. Eur J Pharm Biopharm 
2004; 57:189-197.

92. Chandy T, Das GS, Rao GH. 5-Fluorouracil-loaded 
chitosan coated polylactic acid microspheres as 
biodegradable drug carriers for cerebral tumours. J 
Microencapsul 2000; 17:625-638.

93. Fournier E, Passirani C, Colin N, Breton P, Sagodira 
S, Benoit JP. Development of novel 5-FU-loaded 
poly(methylidene malonate 2.1.2)-based microspheres 
for the treatment of brain cancers. Eur J Pharm Biopharm 
2004; 57:189-197.

94. Niwa T, Takeuchi H, Hino T, Kunou N, Kawashima Y. 
Preparations of biodegradable nanospheres of water-
soluble and insoluble drugs with D,L-lactide/glycolide 
copolymer by a novel spontaneous emulsification 
solvent diffusion method and the drug release behavior. J 
Control Rel 1993; 25:89-98.

95. Merodio M, Ruiz J, Bustos M, Galan FM, Campanero 
MA, Irache JM. Encapsulation of ganciclovir in albumin 
nanoparticles enhances the thymidine kinase suicide 
gene therapy. J Drug Del Scl Tech 2005; 15:121-127.

96. Herrero-Vanrell R, Ramirez L, Fernandez-Carballido 
A, Refojo MF. Biodegradable PLGA microspheres 
loaded with ganciclovir for intraocular administration. 
Encapsulation technique, in vitro release profiles, and 
sterilization process. Pharm Res 2000; 17:1323-1328.

97. Choi SH, Park TG. G-CSF loaded biodegradable PLGA 
nanoparticles prepared by a single oil-in-water emulsion 
method. Int J Pharm 2006; 311:223-228.

98. Stella B, Arpicco S, Rocco F, Marsaud V, Renoir JM, 

153

Cattel L, Couvreur P. Encapsulation of gemcitabine 
lipophilic derivatives into polycyanoacrylate nanospheres 
and nanocapsules. Int J Pharm 2007; 344:71-77.

99. Sivakumar M, Rao KP. Preparation, characterization, 
and in vitro release of gentamicin from coralline 
hydroxyapatite-alginate composite microspheres. J 
Biomed Mater Res 2003; 65:222-228.

100. Haswani DK, Nettey H, Oettinger C, D'Souza MJ. 
Formulation, characterization and pharmacokinetic 
evaluation of gentamicin sulphate loaded albumin 
microspheres. J Microencapsul 2006; 23:875-886.

101. Prior S, Gamazo C, Irache JM, Merkle HP, Gander B. 
Gentamicin encapsulation in PLA/PLGA microspheres 
in view of treating Brucella infections. Int J Pharm 2000; 
196:115-125.

102. Johnson OL, Jaworowicz W, Cleland JL, Bailey L, 
Charnis M, Duenas E, Wu C, Shepard D, Magil S, Last T, 
Jones AJ, Putney SD. The stabilization and encapsulation 
of human growth hormone in to b iodegradable 
microspheres. Pharm Res 1997; 14:730-735.

103. Takada S, Yamagata Y, Misaki M, Taira K, Kurokawa 
T. Sustained release of human growth hormone from 
microcapsules prepared by a solvent evaporation 
technique. J Control Rel 2003; 88:229-242.

104. Vlugt-Wensink KDF, de Vrueh R, Gresnigt MG, 
Hoogerbrugge CM, van Buul-Offers SC, de Leede LGJ, 
Sterkman LGW, Crommelin DJA, Hennink WE, Verrijk 
R. Preclinical and clinical in vitro in vivo correlation of 
an hGH dextran microsphere formulation. Pharm Res 
2007; 24:2239-2248.

105. Pradhan RS, Vasavada RC. Formulation and in vitro 
release study on poly(DL-lactide)microspheres containing 
hydrophilic compounds: glycine homopeptides. J Control 
Rel 1994; 30:143-154.

106. Vudathala GK, Rogers JA. Microencapsulation of solid 
dispersions: Release of griseofulvin from griseofulvin: 
Phospholipid coprecipitates in microspheres. Pharm Res 
1992; 9:759-763.

107. Tsung M, Burgess DJ. Preparation and stabilization of 
heparin/gelatin complex coacervate microcapsules J 
Pharm Sci 1997; 86:603-607.

108. Raffin Pohlmann A, Weiss V, Mertins O, Pesce da 
Silveira N, Stanisçuaski Guterres S. Spray-dried 
indomethacin-loaded polyester nanocapsules and 
nanospheres: Development, stability evaluation 
and nanostructure models. Eur J Pharm Sci 2002; 
16:305-312.

109. Wang N, Wu XS. A novel approach to stabilization 
o f p r o t e i n d r u g s i n p o l y ( l a c t i c - c o - g l y c o l i c 
acid)microspheres using agarose hydrogel. Int J Pharm 
1998; 166:1-14.

110. Aiedeh K, Gianasi E, Orienti I, Zecchi V. Chitosan 
microcapsules as controlled release systems for insulin. J 
Microencapsul 1997; 14:567-576.

111. Bugamelli F, Raggi MA, Orienti I, Zecchi V. Controlled 
insulin release from chitosan microparticles. Arch Pharm 
Pharm Med Chem 1998; 331:133-138.

112. Igartua M, Hernandez RM, Esquisabel A, Gascon AR, 
Calvo MB, Pedraz JL. Influence of formulation variables 
on the in-vitro release of albumin from biodegradable 
microparticulate systems. J Microencapsul 1997; 
14:349-356.

113. Tabata Y, Uno K, Muramatsu S, Ikada Y. In vivo effects 
of recombinant interferon alpha A/D incorporated in 
gelatin microspheres on murine tumor cell growth. Jpn J 



www.ddtjournal.com

Drug Discov Ther 2008; 2(3):140-155. 

Cancer Res 1989; 80:387-393.
114. Yang J, Cleland JL. Factors affecting the in vitro release 

of recombinant human interferon-γ (rhIFN-γ) from 
PLGA microspheres. J Pharm Sci 1997; 86:908-914.

115. Brime B, Ballesteros MP, Frutos P. Preparation and in 
vitro characterization of gelatin microspheres containing 
levodopa for nasal administration. J Microencapsul 
2000; 17:777-784.

116. Narayani R, Rao KP. Solid tumor chemotherapy 
using injectable gelatin microspheres containing free 
methotrexate and conjugated methotrexate. Int J Pharm 
1996; 142:25-32.

117. Le Visage C, Rioux-Leclercq N, Haller M, Breton P, 
Malavaud B, Leong K. Efficacy of paclitaxel released 
from bio-adhesive polymer microspheres on model 
superficial bladder cancer. J Urol 2004; 171:1324-1329.

118. Wang J, Ng CW, Win KY, Shoemakers P, Lee TK, Feng 
SS, Wang CH. Release of paclitaxel from polylactide-
co-glycolide (PLGA) microparticles and discs under 
irradiation. J Microencapsul 2003; 20:317-327.

119. Graves RA, Pamujula S, Moiseyev R, Freeman T, 
Bostanian LA, Mandal TK. Effect of different ratios 
of high and low molecular weight PLGA blend on the 
characteristics of pentamidine microcapsules. Int J 
Pharm 2004; 270:251-262.

120. Mandal TK, Bostanian LA, Graves RA, Chapman SR, 
Idodo TU. Porous biodegradable microparticles for 
delivery of pentamidine. Eur J Pharm Biopharm 2001; 
52:91-96.

121. Couvreur P. Blanco-Prieto MJ, Puisieux F, Roques B, 
Fattal E. Multiple emulsion technology for the design of 
microspheres containing peptides and oligopeptides. Adv 
Drug Deliv Rev 1997; 28:85-96.

122. Hurteaux R, Edwards-Lévy F, Laurent-Maquin D, 
Lévy MC. Coating alginate microspheres with a 
serum albumin-alginate membrane: application to the 
encapsulation of a peptide. Eur J Pharm Sci 2005; 
24:187-197.

123. Zou T, Li SL, Cheng SX, Zhang XZ, Zhuo RX. 
Fabrication and in vitro drug release of drug-loaded 
star oligo/poly(DL-lactide) microspheres made by novel 
ultrasonic-dispersion method. J Biomed Mat Res Part A 
2007; 83A:696-702.

124. Li JK, Wang N, Wu XS. Gelatin nanoencapsulation of 
protein/peptide drugs using an emulsifier-free emulsion 
method. J Microencapsul 1998; 15:163-172.

125. Li JK, Wang N, Wu XS. A novel biodegradable system 
based on gelatin nanoparticles and poly(lactic-co-
glycolic acid) microspheres for protein and peptide drug 
delivery. J Pharm Sci 1997; 86:891-895.

126. Whitaker MJ, Hao J, Davies OR, Serhatkulu G, Stolnik-
Trenkic S, Howdle SM, Shakesheff KM. The production 
of protein-loaded microparticles by supercritical fluid 
enhanced mixing and spraying. J Control Rel 2005; 
101:85-92.

127. Zhang W, Jiang X, Hu J, Fu C. Rifampicin polylactic 
acid microspheres for lung targeting. J Microencapsul 
2000; 17:785-788.

128. Burgess DJ, Davis SS. Potential use of albumin 
microspheres as a drug delivery system. II In vivo 
deposition and release of steroids. Int J Pharm 1988; 
46:69-76.

129. Gürkan H, Yalabik-Kaş HS, Hincal AA, Ercan MT. 
Streptomycin sulphate microspheres: Formulation and in 
vivo distribution. J Microencapsul 1986; 3:101-108.

130. Tsubuku S, Sugawara S, Miyajima M, Yoshida M, Asano 
M, Okabe K, Kobayashi D, Yamanaka H. Preparation 
and characterization of oil-in-water type poly(D,L-lactic 
acid) microspheres containing testosterone enanthate. 
Drug Dev Ind Pharm 1998; 24:927-934.

131. Tobío M, Nolley J, Guo Y, McIver J, Alonso MJ. A novel 
system based on a poloxamer/PLGA blend as a tetanus 
toxoid delivery vehicle. Pharm Res 1999; 16:682-688.

132. Sturesson C, Carlfors J, Edsman K, Andersson M. 
Preparation of biodegradable poly(lactic-co-glycolic)acid 
microspheres and their in vitro release of timolol 
maleate. Int J Pharm 1993; 89:235-244.

133. Le Ray AM, Chiffoleau S, Iooss P, Grimandi G, Gouyette 
A, Daculsi G, Merle C. Vancomycin encapsulation in 
biodegradable poly(epsilon-caprolactone) microparticles 
for bone implantation. Influence of the formulation 
process on size, drug loading, in vitro release and 
cytocompatibility. Biomaterials 2003; 24:443-449.

134. O ' D o n n e l l P B , M c G i n i t y J W. P r e p a r a t i o n o f 
microspheres by the solvent evaporation technique. Adv 
Drug Deliv Rev 1997; 28:25-42.

135. Soppimath KS, Aminabhavi TM, Kulkarni AR, 
Rudzinski WE. Biodegradable polymeric nanoparticles 
as drug delivery devices. J Control Rel 2001; 70:1-20.

136. Iwamoto S, Nakagawa K, Nakajima M, Nabetani H. 
Effect of oil phase kinds on preparation of monodisperse 
gelatin microbeads using microchannel emulsification. 
Kagaku to seibutsu 2005; 43:410-415.

137. Berkland C, Kim K, Pack DW. Fabrication of PLG 
microspheres with precisely controlled and monodisperse 
size distribution. J Control Rel 2001; 73:59-74.

138. Berkland C, King M, Cox A, Kim K, Pack DW. Precise 
control of PLG microsphere size provides enhanced 
control of drug release rate. J Control Rel 2002; 
82:137-147.

139. Yeo Y, Basaran OA, Park K. A new process for making 
reservoir-type microcapsules using ink-jet technology 
and interfacial phase separation. J Control Rel 2003; 
93:161-173.

140. Freitas S, Merkle HP, Gander B. Microencapsulation by 
solvent extraction/evaporation: reviewing the state of 
the art of microsphere preparation process technology. J 
Control Rel 2005; 102:313-332.

141. Walsh G. Pharmaceut ica ls , b io logics and b io-
pharmaceuticals. In: Biopharmaceuticals: Biochemistry 
and biotechnology, 2nd ed, John Wiley & Sons Ltd, West 
Sussex, England, 2003; pp. 1-41.

142. Crommelin DJ, Storm G, Verrijk R, de Leede L, Jiskoot 
W, Hennink WE. Shifting paradigms: biopharmaceuticals 
versus low molecular weight drugs. Int J Pharm 2003; 
266:3-16.

143. Barry B, Williams A. Penetration enhancers. Adv Drug 
Deliv Rev 2003; 56:603-618.

144. Mudry B, et al. "Chap. 14 Iontophoresis in Transdermal 
delivery", Bonner MC,  et al. "Chap. 15. Electroporation 
as a mode of skin penetration enhancement", Kost J,  et 
al. "Chap. 16. Ultrasound in percutaneous absorption", 
Enhancement in Drug Delivery (Touitou E, Barry BW, 
eds.), CRC Press, Boca Raton, FL, USA, 2006; pp. 
279-302, pp. 303-315, pp. 317-330.

145. Prausnitz DMR, Bose VG, Langer R, Weaver JC. 
Electroporation of mammalian skin: a mechanism to 
enhance transdermal drug delivery. Proc Natl Acad Sci 
USA 1993; 90:10504-10508.

146. Mitragotri S, Blankschtein SB. Ultrasound mediated 

154



www.ddtjournal.com

Drug Discov Ther 2008; 2(3):140-155. 

transdermal protein delivery. Science 1995; 269:850-853. 
147. Nugroho AK, Li GL, Danhof M, Bouwstra JA. 

Transdermal iontophoresis of rotigotine across human 
stratum corneum in vitro: influence of pH and NaCl 
concentration. Pharm Res 2004; 21:844-850.

148. Henry S, McAllister DV, Allen MG, Prausnitz MR. 
Microfabricated microneedles: a novel approach 
to transdermal drug delivery. J Pharm Sci 1998; 
87:922-925.

149. Teo MA, Shearwood C, Ng KC, Lu J, Moochhala S. In 
vitro and in vivo characterization of MEMS microneedles. 
Biomed Microdevices 2005; 7:47-52.

150. Park JH, Allen MG, Prausnitz MR. Polymer microneedles 
for control1ed-release drug delivery. Pharm Res 2006; 
23:1008-1019.

151. Davis SP, Martanto W, Allen MG, Prausnitz MR. Hollow 
metal microneedles for insulin delivery to diabetic rats. 
IEEE Trams Biomed Eng 2005; 52:909-915.

152. McAllister DV, Wang PM, Davis SP, Park JH, Canatella 
PJ, Allen MG, Prausnitz MR, Kaushik S, Hord AH, 
Denson DD, Smitra S, Henry S. Microfabricated 
needles for transdermal delivery of macromolecules and 
nanoparticles: fabrication methods and transport studies. 
Proc Natl Acad Sci USA 2003; 100:13755-13760.

153. Barry BW. Novel mechanisms and devices to enable 
successful transdermal drug delivery. Eur J Pharm Sci 
2001; 14:101-114.

154. Chabri F, Bouris K, Jones T, Barrow D, Hann A , 
Allender C, Brain K, Birchall J. Microfabricated silicon 
microneedles for nonviral cutaneous gene delivery. Br J 
Dermato1 2004; 150:869-877.

155. Ziaie B, Baldi A, Lei M, Gu Y, Siegel RA. Hard and soft 
micromachining for BioMEMS: review of techniques 
and examples of applications in microfluidics and drug 
delivery. Adv Drug Deliv Rev 2004; 56:145-172.

156. Razzacki SZ, Thwar PK, Yang M, Ugaz VM, Burns MA. 
Integrated microsystems for controlled drug delivery. 
Adv Drug Deliv Rev 2004; 56:185-198.

157. Martanto W, Davis SP, Holiday NR, Wang J, Gill HS, 
Prausnitz MR. Transdermal delivery of insulin using 
microneedles in vivo. Pharm Res 2004; 21:947-952.

158. Matriano JA, Cormier M, Johnson J, Young WA, Buttery 
M, Nyam K, Daddona PE. Macroflux microprojection 
array patch technology: a new and efficient approach 
for intracutaneous immunization. Pharm Res 2002; 
19:63-70.

159. Gardeniers HJGE, Luttge R, Berenschot EJW, de Boer 
MJ, Yeshurun SY, Hefetz M, van't Oever RA, van den 
Berg. Silicon micromachined hollow microneedles for 
transdermal liquid transport. J Microelectromech Syst 

2003; 12:855-862.
160. Sivamani RK, Stoeber B, Wu GC, Zhai H, Liepmann 

D, Maibach H. Clinical microneedle injection of methyl 
nicotinate: stratum corneum penetration. Skin Res 
Technol 2005; 11:152-l56.

161. Li Y, Shawgo RS, Tyler B, Henderson PT, Vogel JS, 
Rosenberg A, Storm PB, Langer R, Brem H, Cima MJ. 
In vivo release from a drug delivery MEMS device. J 
Control Rel 2004; 100:211-219.

162. Wu XM, Todo H, Sugibayashi K. Effects of pretreatment 
of needle puncture and sandpaper abrasion on the in vitro 
skin permeation of fluorescein isothiocyanate (FITC)-
dextran. Int J Pharm 2006; 316:102-108.

163. Cormier M, Johnson B, Ameri M, Nyam K, Libiran 
L, Zhang DD, Daddona P. Transdermal delivery of 
desmopressin using a coated microneedle array patch 
system. J Control Rel 2004; 97:503-511.

164. Park JH, Allen MG, Prausnitz MR. Biodegradable 
polymer microneedles: fabrication, mechanics and 
transdermal drug delivery. J Control Rel 2005; 
104:51-66.

165. Lin W, Cormier M, Samiee A, Griffin A, Johnson B, 
Teng CL, Hardee GE, Daddona PE. Transdermal delivery 
of antisense oligonucleotides with microprojection patch 
(Macroflux) technology. Pharm Res 2001; 18:1789-1793.

166. Mikszta JA, Alarcon JB, Brittingham JM, Sutter DE, 
Pettis RJ, Harvey NG. Improved genetic immunization 
via micromechanical disruption of skin-barrier function 
and targeted epidermal delivery. Nat Med 2002; 
8:415-419.

167. McAllister DV, Wang PM, Davis SP, Park JH, Canatella 
PJ, Allen MG, Prausnitz MR. Microfabricated needles 
for transdermal delivery of macromolecules and 
nanoparticles: fabrication methods and transport studies. 
Proc Natl Acad Sci USA 2003; 100:13755-l3760.

168. Miyano T, Tobinaga Y, Kanno T, Matsuzaki Y, Takeda H, 
Wakui M, Hanada K. Sugar micro needles as transdermic 
drug delivery system. Biomed Microdevices 2005; 
7:185-188.

169. Ito Y, Hagiwara E, Saeki A, Sugioka N, Takada K. 
Feasibility of microneedles for percutaneous absorption 
of insulin. Eur J Pharm Sci 2006; 29:82-88.

170. Ito Y, Yoshimitsu J, Shiroyama K, Sugioka N, Takada 
K. Self-dissolving microneedles for the percutaneous 
absorption of EPO in mice. J Drug Target 2006; 
14:255-262.

  (Received March 11, 2008; Revised April 15, 2008; 
Accepted April 20, 2008)

155



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Japan Color 2001 Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Impact
    /LucidaConsole
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /JPN <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 0
      /MarksWeight 0.283460
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /JapaneseWithCircle
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


