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ABSTRACT: A series of substituted phenylpyrazole[4,5-
b]oleanane derivatives have been synthesized and 
biologically evaluated as inhibitors of glycogen 
phosphorylase (GP). The structure of phenylpyrazole 
moiety in compound 17 was determined by ROESY. 
All of the synthesized oleanane derivatives were 
biologically evaluated against rabbit muscle GPa. 
Within this series of compounds, pyrazole triterpene 
7 (IC50 = 10.8 μM) exhibited slightly more potent 
activity than its parent compound 1. Preliminary 
SAR analysis of the pyrazoleoleanane derivatives as 
GP inhibitors is discussed.  
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1. Introduction

Pentacyclic triterpenoids are very common constituents 
in the plant kingdom. A variety of biological properties 
have been ascribed to this class of compounds including 
anti-inflammation (1), anti-HIV (2,3), suppression 
of tumor promotion (4,5), and protection of the liver 
against toxic injury (6-8). The most well-known 
member of this family of compounds is probably 
oleanolic acid (OA, 1) (Figure 1) which has been 
clinically used as a liver protective drug for more than 
20 years in China. Previously, the current authors first 
reported that 1 and related pentacyclic triterpenes (e.g. 
maslinic acid and corosolic acid; Figure 1) represented 
a new class of inhibitors of glycogen phosphorylase 
(GP) (9-12). GP inhibitors have been regarded as a 
promising therapeutic approach to treatment of type 2 
diabetes, and several GP inhibitors have shown efficacy 
in lowering blood glucose in clinical trials (13).

Given the significant biological importance and 

potential clinical utility of OA as a promising modulator 
of glycogen metabolism, synthesis and biological 
evaluation of new OA derivatives should prove helpful 
in finding more potent therapeutic agents with better 
pharmacokinetic properties. Recently, the current 
authors reported the synthesis and biological evaluation 
of several pyrazole[4,3-b]oleanane derivatives as GP 
inhibitors (9). This paper describes the synthesis, GP 
inhibitory activity, and structure–activity relationships of 
fifteen novel substituted phenylpyrazole [4,5-b]oleanane 
derivatives. To the extent known, all of the OA 
derivatives in this study have not yet to be reported.

2. Materials and Methods

2.1 Chemistry

2.1.1 General methods

The reagents (chemicals): Shanghai Chemical Reagent 
Company. Column chromatography (CC): silica gel 60 
(200-300 mesh). TLC: silica gel 60 F254 plates (250 
μm, Qindao Ocean Chemical Company, China). Melting 
points (M.p.): capillary tube; uncorrected. Infrared (IR) 
spectra: Shimadzu FTIR-8400S spectrometer; in cm–1. 
1H- and 13C-NMR spectra: ACF* 300Q Bruker, CDCl3 
unless otherwise indicated; δ in ppm, J in Hz. LR-MS: 
Hewlett-Packard 1100 LC/MSD spectrometer.

2.1.2 Synthesis

Benzyl 2-Hydroxymethylene-3-oxooleana-12-en-28-
oate (4)

A mixture of 3 (10) (1 g, 1.84 mmol), NaOMe (1 g, 
18.52 mmol), and HCO2Et (1.5 mL, 18.58 mmol) in 
CH2Cl2 (20 mL) was stirred at r.t. for 10 h, and then the 
reaction mixture was evaporated in vacuo. Brine was 
added to the residue, and the mixture was extracted 
with AcOEt. The organic layer was washed with 
H2O, dried (Na2SO4), and concentrated under reduced 
pressure. The crude product was purified by flash CC 
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(silica gel; heptane/AcOEt 50:1) to afford 0.84 g (80%) 
of 4 as a white solid. M.p. 143-145˚C. IR (KBr): 3431, 
2943, 1726, 1166. 1H-NMR (300 MHz): 0.66 (3H, s); 
0.88 (3H, s); 0.90 (3H, s); 0.93 (3H, s); 1.11 (3H, s); 1.14 
(3H, s); 1.18 (3H, s); 2.26 (1H, d, J = 14.4 Hz); 2.93 (1H, 
dd, J = 4.0, 13.8 Hz); 5.05 (1H, d, J = 12.5 Hz); 5.10 
(1H, d, J = 12.5 Hz); 5.33 (1H, t, J = 3.5 Hz); 7.29~7.35 
(5H, m); 8.56 (1H, s). ESI-MS: 595 ([M+Na]+).

Benzyl 1'-phenylpyrazole[4,5-b]olean-12-en-28-oate (5)

A mixture of 4 (0.5 g, 0.87 mmol) and phenylhydrazine 
hydrochloride (0.13 g, 0.92 mmol) in EtOH (20 mL) 
was heated under reflux for 20 h. Brine was added 
to the residue, and the mixture was extracted with 
AcOEt. The organic layer was washed with H2O, dried 
(Na2SO4), and concentrated under reduced pressure. 
The crude product was purified by flash CC (SiO2; 
heptane/AcOEt 50:1) to afford 0.41 g (72%) of 5 as a 
white solid. M.p. 118-120˚C. IR (KBr): 3454, 2947, 
1726, 1627, 1384. 1H-NMR (300MHz): 0.68 (3H, s); 
0.91 (6H, s); 0.94 (3H, s); 1.01 (3H, s); 1.05 (3H, s); 1.15 
(3H, s); 2.11 (1H, d, J = 14.9 Hz); 2.62 (1H, d, J = 14.9 
Hz); 2.92~2.97 (1H, m); 5.05 (1H, d, J = 12.5 Hz); 5.11 
(1H, d, J = 12.5 Hz); 5.37 (1H, br s); 7.32~7.46 (11H, 
m). ESI-MS: 645 ([M+H]+). Anal. calc. for C44H56N2O2: 
C 81.94, H 8.75, N 4.34; Found: C 81.80, H 8.89, N 
4.11.

Benzyl 1'-(p-tolyl)pyrazole[4,5-b]olean-12-en-28-oate (6)

Following the procedure for the preparation of 5, 
treatment of 4 (0.5 g, 0.87 mmol) with p-tolylhydrazine 
hydrochloride (0.15 g, 0.92 mmol) afforded 0.49 g 
(85%) of 6. M.p. 113-115˚C. IR (KBr): 3429, 2925, 
1724, 1384. 1H-NMR (300 MHz, DMSO-d6): 0.60 (3H, 
s); 0.84 (3H, s); 0.89 (9H, s); 0.93 (3H, s); 0.98 (3H, 
s); 1.12 (3H, s); 2.05 (1H, d, J = 15.2 Hz); 2.38 (3H, 
s); 2.83~2.88 (1H, m); 5.04 (2H, m); 5.27 (1H, br s); 
7.20~7.40 (10H, m). 13C-NMR (75 MHz): 176.3; 145.2; 
143.0; 139.6; 138.4; 137.4; 136.3; 128.8; 128.7; 128.3; 
127.8; 127.6; 122.6; 122.0; 113.1; 65.2; 54.0; 46.1; 
45.6; 45.3; 41.3; 41.1; 38.5; 38.1; 37.5; 36.4; 34.1; 
33.1; 32.6; 31.9; 31.7; 30.3; 29.1; 27.1; 25.2; 23.2; 
22.7; 22.6; 22.0; 20.6; 18.6; 16.2; 14.9. ESI-MS: 659 

([M+H]+). Anal. calc. for C45H58N2O2: C 82.02, H 8.87, 
N 4.25; Found: C 81.73, H 8.92, N 3.78.

Benzyl 1'-(4"-chlorophenyl)pyrazole[4,5-b]olean-12-en-
28-oate (7)

Following the procedure for the preparation of 5, 
treatment of 4 (0.5 g, 0.87 mmol) with (4-chlorophenyl) 
hydrazine hydrochloride (0.16 g, 0.92 mmol) afforded 
0.49 g (83%) of 7. M.p. 125-127˚C. IR (KBr): 3440, 
2947, 1724, 1159. 1H-NMR (300 MHz, DMSO-d6): 0.60 
(3H, s); 0.84 (3H, s); 0.89 (6H, s); 0.93 (3H, s); 0.98 (3H, 
s); 1.12 (3H, s); 2.05 (1H, d, J = 15.1 Hz); 2.83~2.89 
(1H, m); 5.04 (2H, m); 5.27 (1H, br s); 7.30~7.43 (8H, 
m); 7.53~7.58 (2H, m). 13C-NMR (75 MHz): 176.3. 
145.6; 143.1; 141.0; 138.0; 136.3; 133.5; 130.8; 128.6; 
128.3; 127.8; 127.6; 122.0; 113.6; 75.3; 53.9; 46.1; 
45.6; 41.4; 41.1; 40.4; 37.5; 35.3; 34.1; 33.2; 32.6; 31.9; 
31.7; 30.3; 29.2; 27.2; 25.3; 23.2; 22.8; 22.6; 22.2; 
18.6; 16.3; 14.9. ESI-MS: 679 ([M+H]+). Anal. calc. 
for C44H55ClN2O2: C 77.79, H 8.16, N 4.12; Found: C 
77.74, H 8.32, N 3.84.

Benzyl 1'-(4"-isopropylphenyl)pyrazole[4,5-b]olean-12-
en-28-oate (8)

Following the procedure for the preparation of 5, 
treatment of 4 (0.5 g, 0.87 mmol) with (4-isopropyl-
phenyl)hydrazine hydrochloride (0.17 g, 0.92 mmol) 
afforded 0.49 g (81%) of 8. M.p. 95-97˚C. IR (KBr): 
3431, 2952, 1726, 1460, 1384, 1159. 1H-NMR (300 
MHz): 0.68 (3H, s); 0.91 (6H, s); 0.94 (3H, s); 1.01 (3H, 
s); 1.05 (3H, s); 1.15 (3H, s); 2.10 (1H, d, J = 15.1 Hz); 
2.60 (1H, d, J = 14.9 Hz); 2.92~3.01 (2H, m); 5.05 (1H, 
d, J = 12.5 Hz); 5.09 (1H, d, J = 12.5 Hz ); 5.37 (1H, br 
s); 7.27~7.36 (10H, m). ESI-MS: 687 ([M+H]+). Anal. 
calc. for C47H62N2O2: C 82.17, H 9.10, N 4.08; Found: 
C 81.98, H 9.10, N 3.88.

Benzyl 1'-( 3",5"-difluorophenyl)pyrazole[4,5-b]olean-
12-en-28-oate (9)

Following the procedure for the preparation of 5, 
treatment of 4 (0.5 g, 0.87 mmol) with (3,5-difluoro-
phenyl)hydrazine hydrochloride (0.17 g, 0.92 mmol) 

Figure 1. Several natural pentacyclic triterpenes as GP inihibitors.
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Benzyl 1'-(4"-methoxyphenyl)pyrazole[4,5-b]olean-12-
en-28-oate (12)

Following the procedures for the preparation of 5, 
treatment of 4 (0.5 g, 0.87 mmol) with (4-methoxy-
phenyl)hydrazine hydrochloride (0.16 g, 0.92 mmol) 
afforded 0.37 g (62%) of 12. M.p. 171-173˚C. IR (KBr): 
3423, 2945, 1726, 1516, 1250. 1H-NMR (300 MHz): 
0.67 (3H, s); 0.89 (3H, s); 0.91 (3H, s); 0.94 (3H, s); 1.03 
(3H, s); 1.08 (3H, s); 1.15 (3H, s); 2.64 (1H, d, J = 14.9 
Hz); 2.92~2.98 (1H, m); 3.86 (3H, s); 5.05 (1H, d, J = 
12.5 Hz); 5.10 (1H, d, J = 12.5 Hz); 5.36 (1H, t, J = 3.6   
Hz); 6.90~6.98 (2H, m); 7.29~7.36 (7H, m); 7.49 (1H, 
s). ESI-MS: 675 ([M+H]+). Anal. calc. for C45H58N2O3: 
C 80.08, H 8.66, N 4.15; Found: C 79.85, H 8.72, N 
3.93.

Benzyl 1'-(2"-ethylphenyl)pyrazole[4,5-b]olean-12-en-
28-oate (13)

Following the procedures for the preparation of 5, 
treatment of 4 (0.5 g, 0.87 mmol) with (2-ethylphenyl) 
hydrazine hydrochloride (0.16 g, 0.92 mmol) afforded 
0.51 g (87%) of 13. M.p. 108-110˚C. IR (KBr): 
3440, 2947, 1726, 1456, 1382. 1H-NMR (300 MHz, 
DMSO-d6): 0.59 (3H, s); 0.70 (3H, s); 0.81 (3H, s); 0.83 
(3H, s); 0.89 (6H, s); 1.02 (3H, s); 2.83~2.89 (1H, m); 
5.02~5.06 (2H, m); 5.27 (1H, br s); 7.29~7.47 (10H, m). 
13C-NMR (75 MHz): 176.2; 145.0; 144.9; 143.0; 142.7; 
142.6; 140.4; 140.3; 137.6; 137.5; 136.2; 129.4; 129.3; 
129.2; 129.1; 128.4; 128.3; 127.8; 127.6; 125.5; 122.0; 
113.3; 113.1; 65.2; 53.9; 46.1; 45.7; 45.5; 45.3; 45.3; 
41.4; 41.1; 38.4; 38.3; 38.2; 37.6; 37.5; 36.3; 34.1; 
34.0; 33.1; 32.6; 31.9; 31.7; 30.3; 29.7. 27.3; 27.1; 
25.2; 25.2; 23.2; 23.0; 23.0; 22.8; 22.6; 22.4; 20.2; 
18.6; 16.3; 16.2; 15.1; 14.6; 14.4; 14.3. ESI-MS: 673 
([M+ H]+).

Benzyl 1'-(3"-chloro-4"-methylphenyl)pyrazole[4,5-
b]olean-12-en-28-oate (14)

Following the procedures for the preparation of 5, 
treatment of 4 (0.5 g, 0.87 mmol) with (3-chloro-4-
methylphenyl)hydrazine hydrochloride (0.18 g, 0.92 
mmol) afforded 0.51 g (85%) of 14. M.p. 92-93˚C. IR 
(KBr): 3452, 2947, 1726, 1159. 1H-NMR (300 MHz): 
0.68 (3H, s); 0.90 (3H, s); 0.91 (3H, s); 0.94 (3H, s); 1.02 
(3H, s); 1.06 (3H, s); 1.16 (3H, s); 2.09 (1H, d, J = 15.0  
Hz); 2.44 (3H, s); 2.59 (1H, d, J = 14.9 Hz); 2.93~2.97 
(1H, m); 5.05 (1H, d, J = 12.5 Hz); 5.10 (1H, d, J = 12.5 
Hz); 5.37 (1H, br s); 7.17~7.20 (1H, m); 7.27~7.40 (8H, 
m). 13C-NMR (75 MHz): 177.5; 146.3; 143.6; 141.2; 
138.7; 137.1; 136.5; 133.9; 130.5; 129.7; 128.5; 128.0; 
127.9; 127.3; 122.6; 114.3; 66.0; 54.7; 46.4; 45.9; 45.9; 
41.9; 41.6; 39.3; 38.07; 36.9; 34.7; 33.9; 33.1; 32.4; 
32.3; 30.7; 29.5; 27.7; 25.6; 23.6; 23.3; 23.1; 22.4; 
19.8; 19.2; 16.6; 15.2. ESI-MS: 693 ([M+H]+).

afforded 0.49 g (83%) of 9. M.p. 95-96˚C. IR (KBr): 
3425, 2949, 1726, 1616, 1458, 1122. 1H-NMR (300 
MHz, DMSO-d6): 0.61 (3H, s); 0.85 (3H, s); 0.89 (6H, 
s); 0.98 (3H, s); 1.02 (3H, s); 1.12 (3H, s); 2.07 (1H, d, 
J = 15.1 Hz); 2.83~2.89 (1H, m); 5.04 (2H, m); 5.27 (1H, 
br s); 7.22~7.39 (8H, m); 7.43~7.52 (1H, m). 13C-NMR 
(75 MHz): 176.2; 163.2; 163.1; 159.8; 145.7; 144.5; 
144.3; 144.1; 143.0; 138.4; 136.2; 128.2; 127.7; 127.6; 
122.0; 113.8; 113.3; 113.2; 113.0; 112.9; 105.2; 104.9; 
104.6; 65.2; 54.0; 46.1; 45.6; 45.3; 41.3; 41.1; 37.5; 
36.3;34.0; 33.1; 32.6; 31.9; 31.7; 30.2; 29.1; 27.1; 25.2; 
23.2; 22.7; 22.6; 22.4; 22.2; 18.6; 16.2. ESI-MS: 681 
([M+H]+). Anal. calc. for C44H54F2N2O2: C 77.61, H 7.99, 
N 4.11; Found: C 77.60, H 8.25, N 3.68.

Benzyl 1'-(4"-cyanophenyl)pyrazole[4,5-b]olean-12-en-
28-oate (10)

Following the procedures for  the preparat ion 
of  5 ,  t reatment  of  4  (0 .5 g,  0 .87 mmol)  with 
4-hydrazinylbenzonitrile hydrochloride (0.16 g, 0.92 
mmol) afforded 0.47 g (80%) of 10. M.p. 135-137˚C. 
IR (KBr): 3442, 2947, 1724, 1382, 1159. 1H-NMR (300 
MHz, DMSO-d6): 0.60 (3H, s); 0.85 (3H, s); 0.89 (6H, 
s); 0.94 (3H, s); 0.97 (3H, s); 1.12 (3H, s); 2.07 (1H, d, 
J = 15.3 Hz); 2.55 (1H, d, J = 15.1 Hz); 2.83~2.89 (1H, 
m); 5.04 (2H, m); 5.27 (1H, br s); 7.28~7.40 (6H, m); 
7.58~7.62 (2H, m); 7.97~8.02 (2H, m). 13C-NMR (75 
MHz): 176.8; 146.6; 146.4; 143.6; 139.2; 136.8; 133.4; 
130.5; 128.8; 128.3; 128.2; 122.6; 118.6; 114.6; 65.8; 
54.5; 46.7; 46.2; 45.9; 41.9; 41.7; 39.1; 38.0; 36.8; 
34.6; 33.7; 33.2; 32.5; 32.2; 30.8; 29.8; 27.6; 25.8; 
23.8; 23.3; 23.2; 22.9; 19.2; 16.8; 15.5. ESI-MS: 670 
([M+H]+). Anal. calc. for C45H55N3O2: C 80.68, H 8.27, 
N 6.27; Found: C 80.55, H 8.46, N 5.99.

Benzyl 1'-(4"-carboxyphenyl)pyrazole[4,5-b]olean-12-
en-28-oate (11)

Following the procedures for  the preparat ion 
of  5 ,  t reatment  of  4  (0 .5 g,  0 .87 mmol)  with 
4-hydrazinylbenzoic acid hydrochloride (0.17 g, 0.92 
mmol) afforded 0.28 g (47%) of 11. M.p. 165-167˚C. 
IR (KBr): 3425, 2945, 1726, 1379, 1163. 1H-NMR (300 
MHz, DMSO-d6): 0.60 (3H, s); 0.85 (3H, s); 0.89 (6H, 
s); 0.93 (3H, s); 0.97 (3H, s); 1.12 (3H, s); 2.06 (1H, 
d, J = 15.0 Hz); 2.54 (1H, d, J = 15.0 Hz); 2.84~2.88 
(1H, m); 5.03 (1H, d, J = 13.0 Hz); 5.06 (1H, d, J = 
13.0 Hz); 5.27 (1H, t, J = 3.2 Hz); 7.30~7.37 (6H, m); 
7.60~7.62 (2H, m); 7.98~8.00 (2H, m). 13C-NMR (75 
MHz): 176.3; 146.1; 145.9; 143.1; 138.7; 136.3; 132.9; 
130.0; 128.3; 127.8; 127.7; 122.1; 118.1; 114.1; 111.8; 
65.3; 53.9; 46.1; 45.6; 45.3; 41.4; 41.1; 39.0; 38.7; 37.5; 
36.3; 34.1; 33.1; 32.6; 31.9; 31.7; 30.3; 29.3; 27.1; 
25.2; 23.2; 22.8; 22.6; 22.3; 18.6; 16.2; 14.9. ESI-MS: 
689 ([M+H]+). Anal. calc. for C45H56N2O4: C 78.45, H 
8.19, N 4.07; Found: C 78.26, H 8.50, N 3.91.
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3-Oxoleana-12-en-28-oic acid (15)

To a solution of 1 (OA) (2 g, 4.3 mmol) in acetone 
(100 mL) was added Jones reagent (8 mL) at 0˚C. 
The resulting mixture was stirred for 30 min. Then 
the reaction mixture was quenched by EtOH. After 
removing most solvents by evaporation under reduced 
pressure, to the residue was added EtOAc (50 mL) 
and THF (10 mL). The organic layer was washed with 
brine, dried (Na2SO4) and concentrated under reduced 
pressure. The crude product was purified by flash CC 
(SiO2; heptane/AcOEt 15:1) to afford 1.6 g (80%) of 
15. M.p. 199-201˚C. IR (KBr): 3448, 2945, 1701, 1460, 
1384. 1H-NMR (300 MHz): 0.81 (3H, s); 0.91 (3H, s); 
0.93 (3H, s); 1.03 (3H, s); 1.05 (3H, s); 1.09 (3H, s); 
1.15 (3H, s); 2.30~2.48 (1H, m); 2.49~2.65 (1H, m); 2.84 
(1H, dd, J = 4.0, 13.7 Hz); 5.30 (1H, br s). ESI-MS: 453 
([M-H]-).

2-Hydroxymethylene-3-oxooleana-12-en-28-oic acid (16)

A mixture of 15 (0.84 g, 1.85 mmol), NaOMe (1 g, 
18.52 mmol) and HCO2Et (1.5 mL, 18.58 mmol) in 
CH2Cl2 (20 mL) was stirred at r.t. for 10 h, and then the 
reaction mixture was evaporated in vacuo. Brine was 
added to the residue, and the mixture was extracted with 
AcOEt. The organic layer was washed with H2O, dried 
(Na2SO4) and concentrated under reduced pressure. 
The crude product was purified by flash CC (silica gel; 
heptane/AcOEt 10:1) to afford 0.7 g (78%) of 16. White 
solid. M.p. 212-214˚C. IR (KBr): 2945, 1691, 1581. 
1H-NMR (300 MHz, DMSO-d6): 0.76 (6H, s); 0.86 (6H, 
s); 1.10 (9H, s); 2.29 (1H, d, J = 14.5 Hz); 2.75 (1H, dd, 
J = 3.7, 13.9 Hz); 5.20 (1H, s); 8.73 (1H, s); 11.98 (1H, 
s); 14.28 (1H, br s). ESI-MS: 481 ([M-H]-).

1'-Phenylpyrazole[4,5-b]olean-12-en-28-oisc acid (17)

A mixture of 16 (0.5 g, 1.04 mmol) and phenylhydrazine 
hydrochloride (0.16 g, 1.09 mmol) in EtOH (20 mL) 
was heated under reflux for 20 h. Brine was added to 
the residue, and the mixture was extracted with AcOEt. 
The organic layer was washed with H2O, dried (Na2SO4) 
and concentrated under reduced pressure. The crude 
product was purified by flash CC (SiO2; CH2Cl2/MeOH 
100:1) and then recrystallization from AcOEt to afford 
0.42g (73%) of 17. White solid. M.p. > 300˚C. IR 
(KBr): 2904, 1722, 1458, 1382. 1H-NMR (300 MHz, 
DMSO-d6): 0.80 (3H, s); 0.89 (9H, s); 0.94 (3H, s); 
0.98 (3H, s); 1.13 (3H, s); 2.07 (1H, d, J = 14.9 Hz); 
2.55 (1H, d, J = 14.9 Hz); 2.76~2.83 (1H, m); 5.25 (1H, 
br s); 7.29 (1H, s); 7.33~7.38 (2H, m); 7.45~7.52 (3H, 
m); 12.01 (1H, s). 13C-NMR (75 MHz): 178.7; 145.5; 
143.7; 142.3; 137.8; 129.2; 129.1; 128.6; 121.7; 113.5; 
54.2; 45.9; 45.8; 45.7; 41.6; 41.1; 37.8; 36.6; 34.3; 33.5; 
33.0; 32.2; 32.0; 30.5; 29.3; 27.4; 25.5; 23.5; 23.0; 22.8; 
22.3; 18.9; 16.7; 15.2. HRMS: Calcd for C37H49N2O2: 

553.3794 ([M-H]-), Found 553.3795 ([M-H]-). Anal. 
calc. for C37H50N2O2: C 80.10, H 9.08, N 5.05; Found: C 
79.77, H 8.85, N 4.98.

1'-(p-Tolyl)pyrazole[4,5-b]olean-12-en-28-oic acid (18)

Following the procedures for the preparation of 17, 
treatment of 16 (0.5 g, 1.04 mmol) with p-tolylhydrazine 
hydrochloride (0.17 g, 1.09 mmol) afforded 0.38 g (65%) 
of 18. M.p. > 300˚C. IR (KBr): 2950, 1718, 1515, 1384. 
1H-NMR (300 MHz, DMSO-d6): 0.79 (3H, s); 0.89 (9H, 
s); 0.94 (3H, s); 0.99 (3H, s); 1.13 (3H, s); 2.05 (1H, d, 
J = 14.9 Hz); 2.39 (3H, s); 2.76~2.81 (1H, m); 5.25 (1H, 
br s); 7.20~7.30 (5H, m); 12.01 (1H, br s). 13C-NMR (75 
MHz): 178.7; 145.5; 143.8; 139.8; 138.6; 137.7; 129.0; 
128.9; 121.7; 113.3; 54.3; 45.9; 45.8; 45.7; 41.6; 41.1; 
37.8; 34.3; 33.5; 32.9; 32.2; 32.0; 30.5; 29.3; 25.5; 23.5; 
23.0; 22.8; 22.3; 22.3; 20.9; 18.9; 16.7; 15.2. HRMS: 
Calcd for C38H51N2O2: 567.3951 ([M-H]-), Found 
567.4000 ([M-H]-). Anal. calc. for C38H52N2O2: C 80.24, 
H 9.21, N 4.92; Found: C 80.06, H 9.11, N 4.82.

1'-(4"-Chlorophenyl)pyrazole[4,5-b]olean-12-en-28-oic 
acid (19)

Following the procedures for the preparation of 17, 
treatment of 16 (0.5 g, 1.04 mmol) with (4-chlorophenyl) 
hydrazine hydrochloride (0.19 g, 1.09 mmol) afforded 
0.38 g (62%) of 19. M.p. 260-262˚C. IR (KBr): 3443, 
2945, 1700, 1613. 1H-NMR (300 MHz): 0.88 (3H, s); 
0.97 (6H, s); 1.00 (3H, s); 1.06 (3H, s); 1.13 (3H, s); 
1.22 (3H, s); 2.69 (1H, d, J = 14.9 Hz); 2.89~2.96 (1H, 
m); 5.42 (1H, br s); 7.38~7.55 (5H, m). ESI-MS: 587 
([M-H]-).

1'-(4"-Isopropylphenyl)pyrazole[4,5-b]olean-12-en-28-
oic acid (20)

Following the procedures for the preparation of 17, 
treatment of 16 (0.5 g, 1.04 mmol) with (4-isopropyl-
phenyl)hydrazine hydrochloride (0.2 g, 1.09 mmol) 
afforded 0.45 g (73%) of 20. M.p. 243-245˚C. IR 
(KBr): 3440, 2943, 1693, 1610. 1H-NMR (300 MHz, 
DMSO-d6): 0.76 (3H, s); 0.86 (9H, s); 0.92 (3H, s); 
0.96 (3H, s); 1.10 (3H, s); 2.03 (1H, d, J = 14.9 Hz); 
2.74~2.78 (1H, m); 2.91~3.00 (1H, m); 5.22 (1H, br 
s); 7.21~7.33 (5H, m); 11.97 (1H, br s). ESI-MS: 595 
([M-H]-).

1'-(3",5"-Difluorophenyl)pyrazole[4,5-b]olean-12-en-28-
oic acid (21)

Following the procedures for the preparation of 17, 
treatment of 16 (0.5 g, 1.04 mmol) with (3,5-difluoro-
phenyl)hydrazine hydrochloride (0.2 g, 1.09 mmol) 
afforded 0.43 g (78%) of 21. M.p. 208-210˚C. IR (KBr): 
3448, 2947, 1703, 1616, 1122. 1H-NMR (300 MHz, 
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DMSO-d6): 0.80 (3H, s); 0.89 (9H, s); 0.99 (3H, s); 1.03 
(3H, s); 1.13 (3H, s); 2.05 (1H, d, J = 15.1 Hz); 2.79 (1H, 
dd, J = 3.5, 13.4 Hz); 5.25 (1H, br s); 7.23~7.27 (2H, 
m); 7.35 (1H, s); 7.44~7.51 (1H, m); 12.02 (1H, br s). 
13C-NMR (75 MHz): 178.5; 163.3; 163.1; 160.0; 159.8; 
145.7; 144.3; 144.1; 143.6; 138.5; 121.5; 113.9; 113.4; 
113.2; 113.0; 105.3; 105.0; 104.6; 54.0; 45.7; 45.5; 
41.4; 40.9; 40.3; 37.5; 36.3; 34.1; 33.3; 32.7; 32.0; 
31.7; 30.3; 29.2; 27.2; 25.3; 23.3; 22.8; 22.6; 22.2; 
18.7; 16.5; 14.9. ESI-MS: 589 ([M-H]-).

2.2 Enzymatic activity assays

The inhibitory activity of the test compounds against 
rabbit muscle GPa was monitored using a microplate 
reader (BIO-RAD) based on the published method (14). 
In brief, GPa activity was measured in the direction 
of glycogen synthesis by the release of phosphate 
from glucose-1-phosphate. Each test compound 
was dissolved in DMSO and diluted at different 
concentrations for IC50 determination. The enzyme 
(GPa) was added to 100 μL of buffer containing 50 
mM Hepes (pH 7.2), 100 mM KCl, 2.5 mM MgCl2, 0.5 
mM glucose-1-phosphate, 1 mg/mL glycogen, and the 
test compound in 96-well microplates (Costar). After 
the addition of 150 μL of 1 M HCl containing 10 mg/

mL ammonium molybdate and 0.38 mg/mL malachite 
green, reactions were run at 22˚C for 25 min. And then 
the phosphate absorbance was measured at 655 nm. The 
IC50 values were estimated by fitting the inhibition data 
to a dose-dependent curve using a logistic derivative 
equation.

3. Results and Discussion

3.1 Chemistry

The synthes is  of  subs t i tu ted  phenylpyrazole 
[4,5-b]oleanane derivatives is illustrated in Schemes 
1-3. Following the procedures reported previously 
(9-11), esterification of 1 (OA) with benzyl chloride 
afforded benzyl ester 2. Treatment 2 with PCC afforded 
ketone 3. Formylation of 3 with ethyl formate in 
the presence of NaOMe in CH2Cl2 gave compound 
4. Treatment of 4 with substituted phenylhydrazine 
hydrochloride in EtOH at reflux temperature afforded 
pyrazole triterpene 5~14 (47~87%).

As shown in Scheme 2, the attempted hydrogenolysis 
of 5 in order to obtain the corresponding phenylpyrazole 
triterpene acid was unsuccessful, resulting in a complex 
mixture. Thus, a new approach for synthesis of 
phenylpyrazole triterpene acid was designed (Scheme 3). 
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Oxidation of 1 (OA) with Jones reagent in acetone gave 
keto-acid 15. Formylation of 15 with ethyl formate 
in the presence of NaOMe in CH2Cl2 gave compound 
16. Treatment of 16 with substituted phenylhydrazine 
hydrochloride in EtOH at reflux temperature afforded 
substituted phenylpyrazole triterpene acid 17~21 
(62~73%).

The structure of 17 was unambiguously determined 
by NMR and HRMS data (see 2.1.2 Synthesis), 
including ROESY analysis.

3.2 Biological evaluation

The synthesized phenylpyrazole[4,5-b]oleanane 
derivatives were biologically evaluated for their 
inhibitory activity against rabbit muscle GPa. The 
activity of rabbit muscle GPa was measured by 
detecting the release of phosphate from glucose 
-1-phosphate in the direction of glycogen synthesis 
(14). The assay results showed that most of the newly 

synthesized pyrazole triterpenes exhibited inhibitory 
activity against rabbit muscle GPa with IC50 values in 
the range of 10.8–535 μM (Table 1).
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Table 1. Inhibition of rabbit muscle GPa by compounds 1, 5-21

a Values are means of three experiments; b NI means no inhibition;
c Caffeine was used as a positive control.

 Compounds

   1(OA)
   5
   6
   7
   8
   9
 10
 11
 12
 13
 14
 17
 18
 19
 20
 21
 caffeinec

RMGPa IC50
a (μM)

  14
  NIb

  57
  10.8
  NI
  NI
257.2
  NI
  13.4
  NI
535
  35.1
  18.3
241.7
  69.6
  46.9
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3.3 SAR analysis

Preliminary structure-activity relationship (SAR) 
analysis showed that incorporation of a phenylpyrazole 
structural unit in the A-ring of oleanolic acid resulted 
in a slight increase in GPa inhibitory potency in some 
cases (e.g. 7 and 12). C(28) Triterpene acids were more 
potent than the corresponding C(28) benzyl esters 
(e.g. 5 vs. 17; 6 vs. 18; 8 vs. 20; 9 vs. 21), indicating a 
preference for hydrophilic groups over hydrophobic 
groups at the C(28) position, agreeing with the authors' 
previous studies (9,10).

4. Conclusion

Fifteen new phenylpyrazole[4,5-b]oleanane derivatives 
have been synthesized and biologically evaluated for 
their inhibitory activity against rabbit muscle GPa. 
Within this series of compounds, 7 (IC50 = 10.8 μM) 
exhibited slightly more potent activity than its parent 
compound, 1 (OA). Preliminary SAR analysis showed a 
clear preference for hydrophilicity over hydrophobicity 
at both the C(28) and pyrazole unit in terms of GPa 
inhibition. Further biological evaluation of these 
phenylpyrazole triterpenes is ongoing and these results 
will be reported in due course.
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