Topoisomerase IIα, rather than IIβ, is a promising target in development of anti-cancer drugs

Wang Chen¹, Jin Qiu¹,², Yuemao Shen¹,*

¹ School of Pharmaceutical Sciences, Shandong University, Ji’nan, Shandong, China;
² School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Ji’nan, Shandong, China.

ABSTRACT: DNA topoisomerase II (TOP2) is a well-known anticancer target. Its inhibitors are among the most effective anticancer drugs currently in clinical use. TOP2-targeting agents fall into two major classes of "Topo poisons" and "Topo inhibitors" based on their mechanisms of action. Mammalian cells possess two genetically distinct TOP2 isoforms, TOP2α and TOP2β, that are differentially regulated and play different roles in living cells. Compared to TOP2β, TOP2α may be an efficacious and safe chemotherapeutic target for cancer treatment. This review discusses the advantage of targeting TOP2α over TOP2β and action of various agents on TOP2α.

Keywords: Topoisomerase IIα, topoisomerase IIβ, therapeutic target, inhibitors, cancer therapy

1. Introduction

Cancer has become one of the leading causes of death in many countries such as China and Japan that are witnessing the aging of society. Screening for effective anticancer agents is an important part of oncotherapy. Alkylating agents have numerous drawbacks such as greater toxicity and less selectivity. In contrast, anticancer reagents that target topoisomerases are more selective, so they restrain the DNA replication of tumor cells in the proliferative phase. Among topoisomerases, DNA topoisomerase II (TOP2) is a well-known anticancer target. Agents that target TOP2 are among the most effective anticancer drugs currently available for the treatment of human cancers. Nevertheless, TOP2-based chemotherapy remains associated with incidences of life-threatening toxic side effects, e.g. drug-induced secondary malignancies (1). Intriguingly, previous studies suggested that suppressing TOP2β, a subtype of TOP2, was responsible for the development of secondary malignancy associated with etoposide treatment (1). However, etoposide and doxorubicin may have potent anti-cancer activity because they target another subtype of TOP2, i.e. TOP2α (2). Hence, agents specifically targeting TOP2α may potentially be efficacious and safe chemotherapeutic drugs with a reduced risk of treatment related to secondary malignancies (2). The current paper discusses the advantage of targeting TOP2α over TOP2β and the therapeutic effects of various agents on TOP2α.

2. DNA topoisomerase

DNA topoisomerases are enzymes that regulate the overwinding or underwinding of DNA and are required for the survival of all organisms. They play an important role in regulating cellular processes such as replication, transcription, and chromosomal segregation by altering DNA topology. The main families of mammalian DNA topoisomerases are topoisomerase I (TOP1) and topoisomerase II (TOP2). Most type I DNA topoisomerases modify DNA topology in an ATP-independent fashion by creating single strand breaks in DNA whereas type II DNA topoisomerases do so in an ATP-dependent fashion by creating double strand breaks in DNA (3). That said, the classification of the topoisomerase family is less unambiguous. There are some similarities between the families, both in functions and amino acid sequences. For example, TOP1β subunit (Spo11) shares GHKL sequence motifs with type IIA topoisomerases, indicating the evolutionary relationship between these enzymes (4).

2.1. Activity of topoisomerases and its role in cancer pathology

Despite sequence homology and functional motifs, the mechanisms of action of TOP1 and TOP2 differ. TOP1, the so-called ω protein from Escherichia coli, was the first DNA topoisomerase and was discovered by James Wang in 1971 (3). TOP1 is an enzyme that relaxes supercoiled DNA through a cycle of cleavage and ligation. In contrast, TOP2 catalyzes a different reaction involving the transient creation of cleavage complex, which involves temporary double strand breaks. The transient double strand breaks can be repaired by the DNA double strand break repair machinery. For example, TOP2α cleavage complex can be repaired by the non-homologous end joining (NHEJ) pathway, which uses short DNA sequences to repair DNA double strand breaks (3). The NHEJ pathway can lead to non-homologous DNA sequences, which may contribute to the development of secondary malignancies (1).
religation steps involving the active site residue Tyr723 (6). This residue attacks the phosphodiester backbone, breaking the single strand and forming a covalent ‘cleavage complex’ in which the unbroken strand undergoes ‘controlled rotation’ and relaxes the DNA. After relaxation, the scissile strand is religated and the enzyme is released (7). TOP2 is a ubiquitous ribosome that alters the instantaneous cleavage of double-stranded DNA and the chromosomal topological structure, facilitating subsequent double-strand break (DSB) religation (2.8). These enzymes are involved in many aspects of DNA metabolism, including DNA replication, transcription, repair, and chromosome condensation/ segregation (2,9).

Because of the high level of TOP2 expression in cancer cells, TOP2 represents an important target for cancer chemotherapy (10). Several widely prescribed anticancer drugs induce TOP2-mediated chromosome DNA breakage and death of cancer cells by increasing the population of TOP2 cleavage complex (11). There are two major classes of TOP2, TOP2α and TOP2β, in mammalian cells, and they share catalytic mechanisms and have a high degree of amino acid similarity (~70% identity at the amino acid level) (12,13). Despite their similar structural features and biological properties, the two isoforms are differentially regulated and are involved in different cellular processes.

2.2. Advantage of targeting TOP2α over TOP2β in the development of anti-cancer drugs

TOP2α is essential for cell growth and is typically expressed at high levels in rapidly growing cancer cells. Its expression is cell cycle-regulated, peaking in G2/M, whereas TOP2β is expressed in quiescent cells in virtually all tissues throughout the whole cell cycle and is dispensable for cell survival (14). The drawbacks of targeting TOP2β include the induction of cardiotoxicity and the potential development of secondary malignancies. Etoposide (1), teniposide (2), and doxorubicin (3) all target both isoforms of TOP2 and are among the most effective anticancer drugs in clinical use; however, these drugs often cause serious side effects, such as secondary malignancies (Table 1). These facts, together with the evidence that specific inhibition of TOP2α resulted in significant antitumor action (1), suggest that TOP2α-targeted therapy may be a valuable approach for cancer chemotherapy.

Podophyllotoxin is a well-known naturally occurring antitumor lignan lactone isolated from the genus Podophyllum. The semisynthetic podophyllotoxin derivative etoposide (VP-16) is in clinical use as an antineoplastic agent because of its ability to inhibit TOP2 (15). Studies indicated that VP-16-induced carcinogenesis involves mainly the β isoform rather than the α isoform of TOP2. In a mouse skin carcinogenesis model, the incidence of VP-16-induced melanomas in the skin of 7, 12-dimethylbenz[a]anthracene-treated mice was found to be significantly higher in TOP2β(+) than in skin-specific TOP2β-knockout mice (1). Furthermore, VP-16-induced DNA sequence rearrangements and DSB were found to be TOP2β-dependent and preventable by cotreatment with a proteasome inhibitor, suggesting the importance of proteasomal degradation of the TOP2β-DNA cleavage complexes in VP-16-induced DNA sequence rearrangements. The anticancer activity of VP-16 on transformed cells expressing both TOP2 isoforms was, however, found to be primarily TOP2β-dependent. These results indicate the importance of developing TOP2-specific anticancer drugs for effective chemotherapy without causing the development of treatment-related secondary malignancies (1).

Anthracyclines such as doxorubicin (adriamycin, 3) and daunomycin (4) are TOP2-targeting drugs and are some of the most effective anticancer drugs in clinical use. However, doxorubicin-based chemotherapy could result in, among other toxic side effects, life-threatening cardiotoxicity (17-20). Doxorubicin is known to potentially cause damage to the heart in some individuals. In addition, other anthracyclines (like epirubicin and mitoxantrone) may also cause heart damage. Doxorubicin induced less DNA damage in TOP2β(-/-) mouse embryonic fibroblasts (MEF) than in TOP2β(+/-) MEFs, and the damage was reduced by the proteasome inhibitors bortezomib and MG132. These findings suggest the specific involvement of proteasome and TOP2β in doxorubicin-induced DNA damage. This supposition is compatible with a model in which proteasome processing of doxorubicin-induced TOP2β-DNA covalent complexes exposed TOP2β-concealed DNA DSB (21).

Mitoxantrone (5) is a synthetic antibiotic widely used as a chemotherapeutic drug for the treatment of solid tumors, leukemia, and lymphoma (22,23). It was approved by the US Food and Drug Administration (FDA) in 2000 for the treatment of neurologic disability and/or reduction of the frequency of clinical relapses in patients with secondary progressive, progressive relapsing, or worsening relapsing-remitting multiple sclerosis. Numerous studies on the interaction of mitoxantrone and DNA have been undertaken and all indicate that the drug functions by intercalating into DNA double strands (24,25). It has often been referred to as a TOP2 poison, but mitoxantrone also belongs to the class of TOP2 inhibitors (26,27). Mitoxantrone is not a specific TOP2α poison (or inhibitor) and it has marked myelosuppression, heart damage, and hepatotoxicity due to its inhibition of TOP2β.

Although the mechanisms of these side effects have not been fully studied, there might be a considerable benefit to developing TOP2-targeting drugs that are specific for the TOP2α isoform.

3. TOP2α-targeting agents

TOP2 is known to play important roles in cell cycle events, such as DNA replication, chromosome
Table 1. Structure, origin and activity of TOP2 targeting agents

<table>
<thead>
<tr>
<th>Compound</th>
<th>Origin</th>
<th>Chemical structure</th>
<th>Target</th>
<th>Mechanism and activity (IC<sub>50</sub>)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etoposide (1)</td>
<td>Sinopodophyllum emodi (Wall.)</td>
<td></td>
<td>TOP2αβ</td>
<td>Topo poison (2.6 ± 0.8 μM)</td>
<td>(19)</td>
</tr>
<tr>
<td>Teniposide (2)</td>
<td>Semisynthesis</td>
<td></td>
<td>TOP2αβ</td>
<td>Topo poison</td>
<td>(19)</td>
</tr>
<tr>
<td>Doxorubicin (3)</td>
<td>Semisynthesis</td>
<td></td>
<td>TOP2αβ</td>
<td>Topo poison (0.1 – 65 μM)</td>
<td>(20-24)</td>
</tr>
<tr>
<td>Daunomycin (4)</td>
<td>Streptomyces peucetius</td>
<td></td>
<td>TOP2αβ</td>
<td>Topo poison (9.4 – 100 μM)</td>
<td>(20-24)</td>
</tr>
<tr>
<td>Mitoxantrone (5)</td>
<td>Semisynthesis</td>
<td></td>
<td>TOP2αβ</td>
<td>Topo poison</td>
<td>(32,33)</td>
</tr>
<tr>
<td>Amsacrine (6)</td>
<td>Synthesis</td>
<td></td>
<td>TOP2αβ</td>
<td>Topo poison (0.2 – 2.0 μM)</td>
<td>(38)</td>
</tr>
<tr>
<td>NK314 (7)</td>
<td>Synthesis</td>
<td></td>
<td>TOP2α</td>
<td>Topo poison (5.3 – 12.9 μM)</td>
<td>(25)</td>
</tr>
<tr>
<td>Tricitrinol B (8)</td>
<td>Penicillium citrinum</td>
<td></td>
<td>TOP2α</td>
<td>Topo poison (1 – 10 μM)</td>
<td>(26)</td>
</tr>
<tr>
<td>Dp44mT (9)</td>
<td>Synthesis</td>
<td></td>
<td>TOP2α</td>
<td>Topo poison (0.1 μM)</td>
<td>(27,28)</td>
</tr>
<tr>
<td>Bimolane (10)</td>
<td>Synthesis</td>
<td></td>
<td>TOP2α</td>
<td>Topo inhibitor</td>
<td>(29,30)</td>
</tr>
<tr>
<td>MST-16 (11)</td>
<td>Synthesis</td>
<td></td>
<td>TOP2α</td>
<td>Topo inhibitor</td>
<td>(29,30)</td>
</tr>
</tbody>
</table>
condensation/decondensation, and sister chromatid segregation (9). TOP2-targeting agents, involving etoposide, doxorubicin, and mitoxantrone, are the most effective and most widely used anti-cancer drugs in cancer chemotherapy (Table 1) (28). Distinct from "TOP2 inhibitors", these agents are referred to as "TOP2 poisons". TOP2 poisons convert the essential enzyme into a highly cytotoxic DNA-damaging agent through the formation of 'cleavage complex'. There, a TOP2-linked DNA strand-passing intermediate is stabilized, allowing the generation of double strand breaks (29). TOP2 poisons come in two types, intercalating and non-intercalating agents. Intercalators may interact with DNA through covalent binding, electrostatic binding, or intercalating (30). When agents of an appropriate size and chemical structure fit themselves between base pairs of DNA, intercalation occurs. These agents are mainly polycyclic, aromatic, and planar. Non-intercalating agents may lead to protein-drug interactions involving TOP2 poisons and trapped TOP2 covalent complexes because they do not interact strongly with DNA. "TOP2 inhibitors" interrupt the binding of TOP2 and DNA by
binding enzymes to inhibit TOP2 catalytic activity but do not generate increases in the levels of TOP2 covalent complexes (Table 1). In cell culture experiments, TOP2 inhibitors antagonize the toxicity of TOP2 poisons, indicating that TOP2 inhibitors act by separate mechanisms (31). These agents may competitively or non-competitively inhibit TOP2 ATPase activity or trap TOP2 and thus interrupt the binding of TOP2 and DNA. These drugs encompass a diverse group of natural and synthetic compounds that are commonly used to treat a variety of human malignancies (32-34).

3.1. TOP2α poisons

Di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT, 6), an iron chelator, is presumed to have selective antitumor activity in vitro and in vivo (35). In previous studies, Dp44mT alone was capable of inducing apoptosis in neuroepithelioma, melanoma, and breast cancer cells in contrast to healthy fibroblasts. It also had activity in VP-16-resistant clones of MCF-7 breast tumor and KB3-1 epidermoid carcinoma cells. Short-term studies with low-dose Dp44mT inhibited lung, melanoma, and neuroepithelioma tumor growth in nude mice without systemic iron depletion, changes in organ weights, or differences in serum biochemical parameters, in contrast to triapine. Dp44mT inhibits TOP2α activity at low concentrations (36) that are 10- to 100-fold lower than those used to show TOP2 inhibition by ICRF-187 (21). Dp44mT is able to induce the formation of stable cellular TOP2α-DNA complexes, indicative of TOP2α poisoning in cancer cells.

NK314 (7) is a synthetic benzo[c]phenanthridine alkaloid that has strong antitumor activity. The compound was previously reported to stabilize TOP2 cleavage complexes and induce rapid DSBs, causing G2 arrest in tumor cells. Subsequently, NK314 was found to be an α-isomeric-specific TOP2 poison in living mammalian cells that induces TOP2-DNA complexes and chromosomal DSBs in a TOP2α-dependent manner (37). NK-314 can also inhibit DNA-dependent protein kinase (DNA-PK) and induce ataxia telangiectasia, mutated (ATM), contributing to cell survival (38). This perhaps is the reason why NK314 had an antitumor activity on etoposide and doxorubicin-resistant cell lines.

Tricitrinol B (8), a citrinin trimer derivative, was extracted from a volcano ash isolate of the fungus Penicillium citrinum HGY1-5 (39). It had comprehensive cytotoxicity in 17 tumor cell lines (IC\textsubscript{50}: 1-10 μM) and was equally cytotoxic toward two multidrug-resistant cell lines overexpressing Pgp compared to the parental cell lines. Tricitrinol B induced cell cycle arrest in the G2/M phase and apoptosis by inducing DNA fragmentation and caspase activation. Molecular modeling and topoisomerase-mediated DNA relaxation experiments suggested that it is an intercalating TOP2α poison. It inhibited TOP2α isomer activity by interfering with the TOP2α-mediated poststrand-passage cleavage/religation equilibrium in comparison to the prestrand-passage cleavage/religation equilibrium and increased the amount of broken DNA in cells.

Amsacrine (9) is a chemotherapy drug that is usually given in combination with other chemotherapy drugs to treat types of adult and childhood leukemia (40). Its major and minor groove proportions can be altered because its planar fused ring system can intercalate into the DNA of tumor cells. Amsacrine inhibits DNA replication and transcription by reducing the association between the affected DNA and DNA polymerase, RNA polymerase, and transcription factors. Like the better-known agent etoposide, amsacrine also inhibits topoisomerases (41). That said, intercalation of the molecule in the structurally similar α-amsacrine is insufficient to trap TOP2 as a covalent complex on DNA because of the different position of the methoxy substituent group on the anilino-ring. This precludes TOP2 poisons despite amsacrine's intercalative behavior (42).

3.2. TOP2α inhibitors

Bisdioxopiperazines (Biz) such as ICRF-154 (10), MST-16 (11), and ICRF-187 (12) both noncompetitively inhibit TOP2 ATPase activity (43) and trap the TOP2 structure as a closed clamp. Biz have been the most commonly used specific catalytic inhibitors of type II topoisomerases in mammalian cells (44). They are catalytic noncleavable complex-forming inhibitors of DNA TOP2 that do not produce protein-linked DNA strand breaks. Biz have been widely used as a cardioprotectant against anthracycline-induced cardiomyopathy (31,45). Their mechanism of cardioprotection is through anthracycline-induced generation of reactive oxygen species (46). Biz could lead to degradation of TOP2β, a toxic source of anthracycline.

Wedelolactone (13), a coumestan isolated in 1956, is one of the active polyphenolic compounds in extracts of Wedelia calandulaceae and Eclipta prostrata. Wedelolactone has been found to have a wide range of biological effects. Wedelolactone was previously thought to attenuate the NF-κB transcription factor and/or androgen receptor activity and orthotopic growth of prostate cancer in nude mice. However, wedelolactone was cytotoxic to breast cancer MDA-MB-231 cells at concentrations that did not inhibit NF-κB activity. Wedelolactone induced S and G2/M phase cell cycle arrest and led to DNA damage signaling (47). Wedelolactone was found to inhibit DNA relaxation and TOP2α-mediated decatenation. Inhibition of growth and promotion of apoptosis by wedelolactone did not result from deregulation of NF-κB but were more likely attributable to its ability to bind dsDNA, inhibit TOP2α, and block DNA synthesis.
Daurinol (14), a novel arylphthalene lignan isolated from the ethnopharmacological plant *Haplophyllum dauricum*, has potent anticancer activity of human TOP2α and induces S phase cell cycle arrest through the enhanced expression of cyclins E and A and by activation of the ATM/Chk/Cdc25A pathway in HCT116 cells (48). Unlike etoposide, daurinol did not cause DNA damage or nuclear enlargement in *vivo*. It has potential antitumor action in mice, with fewer side effects than etoposide, although it has same chemical structure backbone as etoposide.

Echinoside A (15), isolated from the sea cucumber *Holothuria nobilis* Selenka, has potent anticancer activity. It is a new nonintercalative TOP2α inhibitor because of its inhibition of the noncovalent binding of TOP2α to DNA rather than the ATPase activity of TOP2. Echinoside A interferes with the binding of TOP2 to DNA, thus impairing the prestrand passage cleavage/religation equilibrium. In addition, echinoside A results in TOP2α-dependent DNA DSBs. These facts make echinoside A the first marine-derived triterpene glycoside TOP2α inhibitor (49). Echinoside A reduces the noncovalent binding of TOP2 to DNA. Echinoside imitates DNA action and competitively inhibits the binding of the enzyme to DNA. This concept may lead to novel strategies for designing new TOP2 inhibitors, and more importantly, echinoside A can be used to implement such a strategy.

Thiosemicarbazone (CuII(thiosemicarbazonato)Cl complexes, TSC, 16), condensed heterocyclic carboxaldehyde moieties, have been found to have marked antibacterial, antiviral, antifungal, and, most intriguingly, antineoplastic activity (50). Recent studies indicated that the thiosemicarbazones and their metal complexes had the ability to inhibit TOP2α. These studies both reinforced the significant potential of metal-thiosemicarbazonato complexes in cancer research and they also expanded the array of potential biochemical targets for those molecules (51-54). R-Heterocyclic thiosemicarbazones and their Cu(II) complexes are capable of *in vitro* and *in vivo* inhibition of TOP2α at an IC₅₀ below that of the widely employed TOP2α poison etoposide (VP-16). Given the great potential of TSCs and their metal complexes in the development of chemotherapeutic agents and the importance of TOP2α in many forms of cancer, they may be a promising avenue for study (51-53).

3.3. TOP2α inhibitors with undetermined mechanisms

Two novel flavones, 5,2',5'-trihydroxy-7,3',4'-trimethoxyflavone (17), and 5,7,2',5'-tetrahydroxy-6,3',4'-trimethoxyflavone (18), were isolated from the leaves and twigs of *Gardenia carinata* (Rubiaceae). Flavone 16 had cytotoxic activity against P-388 and MCF-7 cell lines, while 17 acted only on the P-388 cell line. All active compounds were found to inhibit DNA TOP2α activity, which may be responsible for the observed cytotoxicity (55). Active compounds were evaluated in terms of their DNA TOP2α inhibition in a relaxation assay. All compounds had similar inhibition of the TOP2α enzyme at a low concentration. This indicates that all of the tested compounds effectively inhibited the relaxation activity of TOP2α like the positive control etoposide did at the same concentration. This inhibitory activity may be responsible for their observed cytotoxicity.

Xanthones (for example, garcinone E, 19) are hetero-tricyclic planar compounds originally isolated as secondary metabolites from plants and microorganisms (56). Xanthones have a diverse biological profile including antihypertensive, anticonvulsant, anti-thrombotic, anticholinesterase, and anti-cancer activity. This activity depends on differing structures modified by substituents on the xanthone ring. Recently, epoxide ring-opened xanthone derivatives were synthesized and tested for their topoisomerase inhibitory activity and cytotoxicity. Most of the compounds had TOP2α-specific inhibitory activity (57).

3.4. Prospects for development of TOP2α-targeting agents in the future

Classifying all of these TOP2α-targeting compounds would be difficult due to their various chemical structures, origins, and mechanisms. Additionally, drugs in clinical use have several flaws (*e.g.* drug resistance, myelosuppression, cardiotoxicity, hepatotoxicity, and poor water solubility) that need to be remedied. Nowadays, Biz is a promising TOP2α inhibitor that could be developed into a drug (31,44,45). Natural products are still the main source of TOP2α-targeting agents since more effective novel etoposide-related natural products continue to be isolated (48,58). Podophyllotoxin derivatives might be a safer anticancer drug, but the majority of TOP II-targeting compounds are (semi)synthetic products, so the design and synthesis of podophyllotoxin derivatives may have good prospects.

4. Conclusion and perspectives

TOP2-targeting agents encompass a diverse group of natural and synthetic compounds that are commonly used to treat a variety of human malignancies (32-34). Although TOP2 is the cytotoxic target of the drugs, the relative contributions of TOP2α and TOP2β to the chemotherapeutic effects of these agents have yet to be elucidated. Until now, no truly ‘isoform-specific’ agents have been identified. However, some drugs appear to favor one isoform or the other. TOP2α-favoring drugs may be a valuable novel approach for cancer treatment, so more active compounds targeting TOP2α need to be sought. The discussion herein should contribute to the development of more potent and effective TOP2α inhibitors and an enhanced understanding of their mechanisms of action.
Acknowledgements

This work was financially supported as a Key Project of the Chinese Ministry of Education (306010).

References

(Received December 10, 2011; Revised April 15, 2012; Re-revised August 17, 2012; Accepted October 26, 2012)